Heptagonal Triangle

Geometry Level 4

Let the vertices of A B C \triangle ABC be coinciding with the first, second and fourth vertices of a regular heptagon.

Find tan A + tan B + tan C \tan{A}+\tan{B}+\tan{C} .

7 -\sqrt7 7 2 -\dfrac{\sqrt7}{2} 7 8 -\dfrac{\sqrt7}{8} 3 7 2 -\dfrac{3\sqrt7}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Aug 31, 2019

Draw a circle circumscribing the regular heptagon with center O O .

As a central angle, A O B = 2 π 7 \angle AOB = \frac{2\pi}{7} , and by the inscribed angle theorem A C B = π 7 \angle ACB = \frac{\pi}{7} . Similarly, B O C = 4 π 7 \angle BOC = \frac{4\pi}{7} so B A C = 2 π 7 \angle BAC = \frac{2\pi}{7} , and A O C = 8 π 7 \angle AOC = \frac{8\pi}{7} so A B C = 4 π 7 \angle ABC = \frac{4\pi}{7} . Therefore, the angles of A B C \triangle ABC are A = 2 π 7 \angle A = \frac{2\pi}{7} , B = 4 π 7 \angle B = \frac{4\pi}{7} , and C = π 7 \angle C = \frac{\pi}{7} .

Let x = sin π 7 sin 2 π 7 sin 4 π 7 x = \sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{4\pi}{7} and y = cos π 7 cos 2 π 7 cos 4 π 7 y = \cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} . Then

8 x y = 8 sin π 7 sin 2 π 7 sin 4 π 7 cos π 7 cos 2 π 7 cos 4 π 7 8xy = 8 \sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{4\pi}{7} \cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}

8 x y = ( 2 sin π 7 cos π 7 ) ( 2 sin 2 π 7 cos 2 π 7 ) ( 2 sin 4 π 7 cos 4 π 7 ) 8xy = (2 \sin \frac{\pi}{7} \cos \frac{\pi}{7}) (2 \sin \frac{2\pi}{7} \cos \frac{2\pi}{7}) (2 \sin \frac{4\pi}{7} \cos \frac{4\pi}{7})

8 x y = sin 2 π 7 sin 4 π 7 sin 8 π 7 8xy = \sin \frac{2\pi}{7} \sin \frac{4\pi}{7} \sin \frac{8\pi}{7}

8 x y = sin 2 π 7 sin 4 π 7 ( sin π 7 ) 8xy = \sin \frac{2\pi}{7} \sin \frac{4\pi}{7} (-\sin \frac{\pi}{7})

8 x y = sin π 7 sin 2 π 7 sin 4 π 7 8xy = -\sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{4\pi}{7}

8 x y = x 8xy = -x

y = 1 8 y = -\frac{1}{8}

Therefore, y = cos π 7 cos 2 π 7 cos 4 π 7 = 1 8 y = \cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} = -\frac{1}{8} . Also,

8 x 2 = 8 sin 2 π 7 sin 2 2 π 7 sin 2 4 π 7 8x^2 = 8 \sin^2 \frac{\pi}{7} \sin^2 \frac{2\pi}{7} \sin^2 \frac{4\pi}{7}

8 x 2 = ( 2 sin 2 π 7 ) ( 2 sin 2 2 π 7 ) ( 2 sin 2 4 π 7 ) 8x^2 = (2 \sin^2 \frac{\pi}{7}) (2 \sin^2 \frac{2\pi}{7}) (2 \sin^2 \frac{4\pi}{7})

8 x 2 = ( 1 cos 2 π 7 ) ( 1 cos 4 π 7 ) ( 1 cos 8 π 7 ) 8x^2 = (1 - \cos \frac{2\pi}{7}) (1 - \cos \frac{4\pi}{7}) (1 - \cos \frac{8\pi}{7})

8 x 2 = ( 1 cos 2 π 7 ) ( 1 cos 4 π 7 ) ( 1 + cos π 7 ) 8x^2 = (1 - \cos \frac{2\pi}{7}) (1 - \cos \frac{4\pi}{7}) (1 + \cos \frac{\pi}{7})

8 x 2 = ( 1 + cos π 7 ) ( 1 cos 2 π 7 ) ( 1 cos 4 π 7 ) 8x^2 = (1 + \cos \frac{\pi}{7}) (1 - \cos \frac{2\pi}{7}) (1 - \cos \frac{4\pi}{7})

8 x 2 = 1 + cos π 7 cos 2 π 7 cos 4 π 7 cos π 7 cos 2 π 7 cos π 7 cos 4 π 7 + cos 2 π 7 cos 4 π 7 + cos π 7 cos 2 π 7 cos 4 π 7 8x^2 = 1 + \cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7} - \cos \frac{\pi}{7}\cos \frac{2\pi}{7} - \cos \frac{\pi}{7}\cos \frac{4\pi}{7} + \cos \frac{2\pi}{7}\cos \frac{4\pi}{7} + \cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{4\pi}{7}

8 x 2 = 1 + cos π 7 cos 2 π 7 cos 4 π 7 cos π 7 cos 2 π 7 cos π 7 cos 4 π 7 + cos 2 π 7 cos 4 π 7 1 8 8x^2 = 1 + \cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7} - \cos \frac{\pi}{7}\cos \frac{2\pi}{7} - \cos \frac{\pi}{7}\cos \frac{4\pi}{7} + \cos \frac{2\pi}{7}\cos \frac{4\pi}{7} - \frac{1}{8}

8 x 2 = 7 8 + cos π 7 cos 2 π 7 cos 4 π 7 cos π 7 cos 2 π 7 cos π 7 cos 4 π 7 + cos 2 π 7 cos 4 π 7 8x^2 = \frac{7}{8} + \cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7} - \cos \frac{\pi}{7}\cos \frac{2\pi}{7} - \cos \frac{\pi}{7}\cos \frac{4\pi}{7} + \cos \frac{2\pi}{7}\cos \frac{4\pi}{7}

8 x 2 = 7 8 + ( cos π 7 cos 2 π 7 cos 4 π 7 ) 1 2 ( 2 cos π 7 cos 2 π 7 + 2 cos π 7 cos 4 π 7 2 cos 2 π 7 cos 4 π 7 ) 8x^2 = \frac{7}{8} + (\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7}) - \frac{1}{2}(2 \cos \frac{\pi}{7}\cos \frac{2\pi}{7} + 2 \cos \frac{\pi}{7}\cos \frac{4\pi}{7} - 2 \cos \frac{2\pi}{7}\cos \frac{4\pi}{7})

8 x 2 = 7 8 + ( cos π 7 cos 2 π 7 cos 4 π 7 ) 1 2 ( ( cos 3 π 7 + cos π 7 ) + ( cos 5 π 7 + cos 3 π 7 ) ( cos 6 π 7 + cos 2 π 7 ) ) 8x^2 = \frac{7}{8} + (\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7}) - \frac{1}{2}((\cos \frac{3\pi}{7} + \cos \frac{\pi}{7}) + (\cos \frac{5\pi}{7} + \cos \frac{3\pi}{7}) - (\cos \frac{6\pi}{7} + \cos \frac{2\pi}{7}))

8 x 2 = 7 8 + ( cos π 7 cos 2 π 7 cos 4 π 7 ) 1 2 ( ( cos 4 π 7 + cos π 7 ) + ( cos 2 π 7 cos 4 π 7 ) ( cos π 7 + cos 2 π 7 ) ) 8x^2 = \frac{7}{8} + (\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7}) - \frac{1}{2}((-\cos \frac{4\pi}{7} + \cos \frac{\pi}{7}) + (-\cos \frac{2\pi}{7} - \cos \frac{4\pi}{7}) - (-\cos \frac{\pi}{7} + \cos \frac{2\pi}{7}))

8 x 2 = 7 8 + ( cos π 7 cos 2 π 7 cos 4 π 7 ) 1 2 ( 2 cos π 7 2 cos 2 π 7 2 cos 4 π 7 ) 8x^2 = \frac{7}{8} + (\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7}) - \frac{1}{2}(2 \cos \frac{\pi}{7} - 2 \cos \frac{2\pi}{7} - 2 \cos \frac{4\pi}{7})

8 x 2 = 7 8 + ( cos π 7 cos 2 π 7 cos 4 π 7 ) ( cos π 7 cos 2 π 7 cos 4 π 7 ) 8x^2 = \frac{7}{8} + (\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7}) - (\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} - \cos \frac{4\pi}{7})

8 x 2 = 7 8 8x^2 = \frac{7}{8}

x = 7 8 x = \frac{\sqrt{7}}{8}

Therefore, x = sin π 7 sin 2 π 7 sin 4 π 7 = 7 8 x = \sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{4\pi}{7} = \frac{\sqrt{7}}{8} .

For any triangle, tan A + tan B + tan C = tan A tan B tan C \tan A + \tan B + \tan C = \tan A \tan B \tan C , so for this triangle,

tan A + tan B + tan C = tan π 7 tan 2 π 7 tan 4 π 7 = sin π 7 sin 2 π 7 sin 4 π 7 cos π 7 cos 2 π 7 cos 4 π 7 = 7 8 1 8 = 7 \tan A + \tan B + \tan C = \tan \frac{\pi}{7} \tan \frac{2\pi}{7} \tan \frac{4\pi}{7} = \frac{\sin \frac{\pi}{7} \sin \frac{2\pi}{7} \sin \frac{4\pi}{7}}{\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}} = \frac{\frac{\sqrt{7}}{8}}{-\frac{1}{8}} = \boxed{-\sqrt{7}} .

Mark Hennings
Sep 24, 2019

If we write F ( t ) = 2 t 1 t 2 F(t) \; = \; \frac{2t}{1-t^2} then F ( F ( F ( t ) ) ) t = t ( 1 + t 2 ) ( t 6 21 t 4 + 35 t 2 7 ) t 8 28 t 6 + 70 t 4 28 t 2 + 1 F(F(F(t))) - t \; = \; -\frac{t (1 + t^2) (t^6 - 21t^4 + 35t^2 - 7)}{ t^8 - 28t^6 + 70t^4 - 28t^2 + 1} and hence the roots of the polynomial G ( t ) = t 6 21 t 4 + 35 t 2 7 G(t) \; = \; t^6 - 21t^4 + 35t^2 - 7 are tan k π 7 \tan\tfrac{k\pi}{7} for 1 k 6 1 \le k \le 6 . Moreover we can write G ( t ) = ( t 3 7 t ) 2 7 ( t 2 + 1 ) 2 = ( t 3 7 t 2 7 t 7 ) ( t 3 + 7 t 2 7 t + 7 ) = G 1 ( t ) G 2 ( t ) G(t) \; = \; (t^3 - 7t)^2 - 7(t^2+1)^2 \; = \; (t^3 - \sqrt{7}t^2 - 7t - \sqrt{7}) (t^3 + \sqrt{7}t^2 - 7t + \sqrt{7}) \; = \; G_1(t)G_2(t) and we can show that G 1 ( t ) G_1(t) divides the polynomial ( 1 t 2 ) 3 G 1 ( F ( t ) ) (1-t^2)^3G_1(F(t)) , and that G 2 ( t ) G_2(t) divides ( 1 t 2 ) 3 G 2 ( F ( t ) ) (1-t^2)^3G_2(F(t)) .

Thus the roots of G ( t ) G(t) split into two groups, tan π 7 , tan 2 π 7 , tan 4 π 7 \tan\tfrac{\pi}{7}\,,\,\tan\tfrac{2\pi}{7}\,,\, \tan\tfrac{4\pi}{7} and tan 3 π 7 , tan 6 π 7 , tan 12 π 7 = tan 5 π 7 \tan\tfrac{3\pi}{7}\,,\,\tan\tfrac {6\pi}{7}\,,\,\tan\tfrac{12\pi}{7} = \tan\tfrac{5\pi}{7} . One set gives the zeroes of G 1 ( t ) G_1(t) , and the other set gives the zeroes of G 2 ( t ) G_2(t) . Thus it follows that tan A + tan B + tan C = tan π 7 + tan 2 π 7 + tan 4 π 7 \tan A + \tan B + \tan C = \tan\tfrac{\pi}{7} + \tan\tfrac{2\pi}{7} + \tan\tfrac{4\pi}{7} must be either 7 \sqrt{7} or 7 -\sqrt{7} . Since tan 3 π 7 = tan 2 π 7 + tan π 7 1 tan 2 π 7 tan π 7 > tan π 7 + tan 2 π 7 \tan\tfrac{3\pi}{7} \; = \; \frac{\tan\frac{2\pi}{7} + \tan\frac{\pi}{7}}{1 - \tan\frac{2\pi}{7}\tan\frac{\pi}{7}} \; > \; \tan\tfrac{\pi}{7} + \tan\tfrac{2\pi}{7} it follows that tan A + tan B + tan C = tan π 7 + tan 2 π 7 tan 3 π 7 < 0 \tan A + \tan B + \tan C = \tan\tfrac{\pi}{7} + \tan\tfrac{2\pi}{7} - \tan\tfrac{3\pi}{7} < 0 , so we deduce that the answer is 7 \boxed{-\sqrt{7}} .

Angle A A is 360 7 d e g r e e s \dfrac{360}{7} degrees , B B is 720 7 d e g r e e s \dfrac{720}{7} degrees and C C is 180 7 d e g r e e s \dfrac{180}{7} degrees . So t a n A + t a n B + t a n C = 7 tanA+tanB+tanC=-√ 7

That doesn't help explain why the answer is 7 -\sqrt{7} .

Jon Haussmann - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...