Here comes 2016!

Calculus Level 4

lim n ln ( n 0 1 ( x + 2016 x 2 n ) n d x ) = ? \large \lim _{ n\rightarrow \infty }{ \ln\left( n\int _{ 0 }^{ 1 }{ { \left( x+\frac { { 2016x }^{ 2 } }{ n } \right) }^{ n } \, dx } \right) } = \, ?


Inspired by Satyajit Mohanty


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aditya Kumar
Dec 29, 2015

Alternate solution:

I n = n 0 1 x n e 2016 x d x { I }_{ n }=n\int _{ 0 }^{ 1 }{ { x }^{ n }{ e }^{ 2016x }dx }

Now, we will upper-bound and lower-bound the integral. Since x 1 x\le 1 throughout the range of the integral, we have,

I n n 0 1 z n e 2016 d z e 2016 ( e q n 1 ) I_n \leq n\int_{0}^{1} z^ne^{2016}dz\leq e^{2016}\hspace{20pt}(eqn1)

Similarly, from integration by-parts we obtain I n = n n + 1 e 2016 2016 n n + 1 0 1 e 2016 x x n + 1 d x n n + 1 e 2016 2016 n e 2016 ( n + 1 ) ( n + 2 ) I_n=\frac{n}{n+1}e^{2016}-\frac{2016n}{n+1}\int_{0}^{1} e^{2016x}x^{n+1}dx\geq \frac{n}{n+1}e^{2016}-\frac{2016ne^{2016}}{(n+1)(n+2)}

Taking limit as n n \to \infty , we have

lim n I n e 2016 ( e q n 2 ) \lim_{n\to \infty}I_n\geq e^{2016}\hspace{40pt}(eqn2)

The result now follows from ( e q n 1 ) (eqn1) and ( e q n 2 ) (eqn2) :

I n = e 2016 { I }_{ n }=e^{2016}

This solution bases on "Differentiation under integral sign" technique.

First lim n ln ( n 0 1 ( x + 2016 x 2 n ) n d x ) = ln lim n ( n 0 1 x n ( 1 + 2016 x n ) n d x ) \displaystyle \lim _{ n\rightarrow \infty }{ \ln { \left( n\int _{ 0 }^{ 1 }{ \left( x+\frac { 2016{ x }^{ 2 } }{ n } \right) ^{ n }dx } \right) } } ={ \ln { \lim _{ n\rightarrow \infty }\left( n\int _{ 0 }^{ 1 }{ { x }^{ n }\left( 1+\frac { 2016{ x } }{ n } \right) ^{ n }dx } \right) } }

Since lim n ( 1 + 2016 x n ) n = e 2016 x \displaystyle \lim _{ n\rightarrow \infty }\left( 1+\frac { 2016{ x } }{ n } \right) ^{ n }={ e }^{ 2016x }

The integral becomes

= ln ( lim n n 0 1 x n e 2016 x d x ) \displaystyle ={ \ln { \left( \lim _{ n\rightarrow \infty } n\int _{ 0 }^{ 1 }{ { x }^{ n }{ e }^{ 2016x }dx } \right) } }

So, our problem now is to work out the above integral. Here is where Feynman's technique comes to play role.

Consider

0 1 e a x d x \displaystyle \int _{ 0 }^{ 1 }{ { e }^{ ax } } dx

= e a 1 a \displaystyle =\frac { { e }^{ a }-1 }{ a }

n a n 0 1 e a x d x = 0 1 x n e a x d x \displaystyle \frac { { \partial }^{ n } }{ { \partial a }^{ n } } \int _{ 0 }^{ 1 }{ { e }^{ ax } } dx=\int _{ 0 }^{ 1 }{ { x }^{ n }{ e }^{ ax } } dx

0 1 x n e a x d x = n a n ( e a 1 a ) \displaystyle \int _{ 0 }^{ 1 }{ { x }^{ n }{ e }^{ ax } } dx=\frac { { \partial }^{ n } }{ { \partial a }^{ n } } \left( \frac { { e }^{ a }-1 }{ a } \right)

( e a 1 a ) = m = 0 a m ( m + 1 ) ! \displaystyle \left( \frac { { e }^{ a }-1 }{ a } \right) =\sum _{ m=0 }^{ \infty }{ \frac { { a }^{ m } }{ \left( m+1 \right) ! } }

Then

n a n ( e a 1 a ) = n a n m = 0 a m ( m + 1 ) ! \displaystyle \frac { { \partial }^{ n } }{ { \partial a }^{ n } } \left( \frac { { e }^{ a }-1 }{ a } \right) =\frac { { \partial }^{ n } }{ { \partial a }^{ n } } \sum _{ m=0 }^{ \infty }{ \frac { { a }^{ m } }{ \left( m+1 \right) ! } }

n a n m = 0 a m ( m + 1 ) ! = m = 0 a m n ( m + 1 ) ! m ! ( m n ) ! \displaystyle \frac { { \partial }^{ n } }{ { \partial a }^{ n } } \sum _{ m=0 }^{ \infty }{ \frac { { a }^{ m } }{ \left( m+1 \right) ! } } =\sum _{ m=0 }^{ \infty }{ \frac { { a }^{ m-n } }{ \left( m+1 \right) ! } } \frac { m! }{ \left( m-n \right) ! }

Since every terms which has m less than n will be 0.Let's let j = m n j=m-n and hence the sum will be reduced to

m = 0 a m n ( m + 1 ) ! m ! ( m n ) ! = j = 0 a j ( n + j + 1 ) j ! \displaystyle \sum _{ m=0 }^{ \infty }{ \frac { { a }^{ m-n } }{ \left( m+1 \right) ! } } \frac { m! }{ \left( m-n \right) ! } =\sum _{ j=0 }^{ \infty }{ \frac { { a }^{ j } }{ \left( n+j+1 \right) j! } }

lim n n j = 0 a j ( n + j + 1 ) j ! = lim n j = 0 n a j ( n + j + 1 ) j ! = j = 0 lim n n n + j + 1 a j j ! \displaystyle \lim _{ n\rightarrow \infty }{ n\sum _{ j=0 }^{ \infty }{ \frac { { a }^{ j } }{ \left( n+j+1 \right) j! } } } =\lim _{ n\rightarrow \infty }{ \sum _{ j=0 }^{ \infty }{ \frac { { na }^{ j } }{ \left( n+j+1 \right) j! } } } ={ \sum _{ j=0 }^{ \infty }{ \lim _{ n\rightarrow \infty } \frac { n }{ n+j+1 } \frac { { a }^{ j } }{ j! } } }

j = 0 lim n n n + j + 1 a j j ! = j = 0 a j j ! = e a \displaystyle { \sum _{ j=0 }^{ \infty }{ \lim _{ n\rightarrow \infty } \frac { n }{ n+j+1 } \frac { { a }^{ j } }{ j! } } }={ \sum _{ j=0 }^{ \infty }{ \frac { { a }^{ j } }{ j! } } }={ e }^{ a }

Substitute a=2016 as in the question we get

lim n ln ( n 0 1 ( x + 2016 x 2 n ) n d x ) = ln e 2016 = 2016 \displaystyle \lim _{ n\rightarrow \infty }{ \ln { \left( n\int _{ 0 }^{ 1 }{ \left( x+\frac { 2016{ x }^{ 2 } }{ n } \right) ^{ n }dx } \right) } }=\ln{e^{2016}}=\boxed{2016}

Ronak Agarwal
Dec 28, 2015

The function

f ( x ) = lim n { n x n 0 x 1 0 e l s e w h e r e } = δ ( x 1 ) \displaystyle f(x) = \lim _{ n\rightarrow \infty }{ \left\{ n{ x }^{ n }\quad 0\le x\le 1\\ \quad \quad \quad \quad \quad \quad 0\quad elsewhere \right\} } = \delta{(x-1)}

is a dirac delta function.

Properties of dirac delta function :

a ϵ a + ϵ δ ( x a ) d x = 1 \displaystyle \int _{ a-\epsilon }^{ a+\epsilon }{ \delta (x-a)dx } =1 , for every non zero ϵ \epsilon .

a ϵ a + ϵ δ ( x a ) f ( x ) d x = f ( a ) \displaystyle \int _{ a-\epsilon }^{ a+\epsilon }{ \delta (x-a)f(x)dx } =f(a)

So the integral here can be written as :

lim n 0 1 n x n ( 1 + a x n ) n d x = 0 1 δ ( x 1 ) e a x d x = e a \displaystyle \lim _{ n\rightarrow \infty }{ \int _{ 0 }^{ 1 }{ n{ x }^{ n }{ \left( 1+\frac { ax }{ n } \right) }^{ n }dx } } =\int _{ 0 }^{ 1 }{ \delta (x-1){ e }^{ ax }dx } ={ e }^{ a }

Hence we are done put a = 2016 \displaystyle a=2016 to get the answer :

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...