Héron can help

Geometry Level 5

Triangle A B C ABC with area 1 is inscribed in a circle. The angle bisectors of angles A , B , C A, B, C meet the circle at D , E , F , D, E, F, respectively, as shown below. Let h a , h b , h c { h }_{ a },{ h }_{ b },{ h }_{ c } denote the 3 heights of triangle A B C ABC dropped from vertices A , B , C , A,B,C, respectively.

What is smallest possible value of P = A D × h a + B E × h b + C F × h c ? P=AD{ \times h }_{ a }+BE\times { h }_{ b }+CF\times { h }_{ c }?

Give your answer to 3 decimal places.


The answer is 6.9282.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Apr 23, 2017

Since the function cos x \cos x is concave for 0 x 1 2 π 0 \le x \le \tfrac12\pi , the AM/GM inequality tells us that cos 1 2 A cos 1 2 B cos 1 2 C 3 1 3 ( cos 1 2 A + cos 1 2 B + cos 1 2 C ) cos ( A + B + C 6 ) = 1 2 3 \sqrt[3]{\cos\tfrac12A \cos\tfrac12B \cos\tfrac12C} \; \le \; \tfrac13\big(\cos\tfrac12A + \cos\tfrac12B + \cos\tfrac12C\big) \; \le \; \cos\big(\tfrac{A+B+C}{6}\big) \; = \; \tfrac12\sqrt{3} and so cos 1 2 A cos 1 2 B cos 1 2 C 3 8 3 \cos\tfrac12A \cos\tfrac12B \cos\tfrac12C \; \le \; \tfrac38\sqrt{3} Letting s s represent the semiperimeter, this tells us that s ( s a ) b c × s ( s b ) a c × s ( s c ) a b 3 8 3 \sqrt{\frac{s(s-a)}{bc} \times \frac{s(s-b)}{ac} \times \frac{s(s-c)}{ab}} \; \le \; \tfrac38\sqrt{3} and hence s Δ 3 8 3 a b c s\Delta \; \le \; \tfrac38\sqrt{3}abc where Δ \Delta is the area of the triangle. Equality occurs in all the above inequalities when the triangle is equilateral.

Standard triangle formulae tell us that (here r r is the inradius) A I = ( s a ) 2 + r 2 = ( s a ) 2 + ( s a ) ( s b ) ( s c ) s = ( s a ) b c s AI \; = \; \sqrt{(s-a)^2 + r^2} \; = \; \sqrt{(s-a)^2 + \frac{(s-a)(s-b)(s-c)}{s}} \; = \; \sqrt{\frac{(s-a)bc}{s}} and, similarly, B I = ( s b ) a c s C I = ( s c ) a b s BI \; = \; \sqrt{\frac{(s-b)ac}{s}} \hspace{2cm} CI \; = \; \sqrt{\frac{(s-c)ab}{s}} Note that D B I = D B C + C B I = 1 2 A + 1 2 B = 9 0 1 2 C \angle DBI \; = \; \angle DBC + \angle CBI \;=\; \tfrac12A + \tfrac12B \; = \; 90^\circ - \tfrac12C while I D B = C \angle IDB = C . Hence the triangle D B I DBI is isosceles, and so D I = D B = I B 2 sin 1 2 C = 1 2 a b c s ( s a ) DI \; = \; DB \; = \; \frac{IB}{2\sin \frac12C} \; = \; \tfrac12a\sqrt{\frac{bc}{s(s-a)}} and hence A D = ( s a ) b c s + 1 2 a b c s ( s a ) = 1 2 b c s ( s a ) [ 2 ( s a ) + a ] = 1 2 b c s ( s a ) ( b + c ) AD \; = \; \sqrt{\frac{(s-a)bc}{s}} + \tfrac12a\sqrt{\frac{bc}{s(s-a)}} \; = \; \tfrac12\sqrt{\frac{bc}{s(s-a)}}\big[2(s-a) + a\big] \; = \; \tfrac12\sqrt{\frac{bc}{s(s-a)}}(b+c) and, similarly, B E = 1 2 a c s ( s b ) ( a + c ) C F = 1 2 a b s ( s c ) ( a + b ) BE \; = \; \tfrac12\sqrt{\frac{ac}{s(s-b)}}(a+c) \hspace{2cm} CF \; = \; \tfrac12\sqrt{\frac{ab}{s(s-c)}}(a+b) Since Δ = 1 2 a h a = 1 2 b h b = 1 2 c h c \Delta = \tfrac12ah_a \; = \; \tfrac12bh_b \; = \; \tfrac12ch_c , we deduce that P = A D h a + B E h b + C F h c = b + c a b c ( s b ) ( s c ) + a + c b a c ( s a ) ( s c ) + a + b c a b ( s a ) ( s b ) P \; = \; AD h_a + BE h_b + CF h_c \; = \; \frac{b+c}{a}\sqrt{bc(s-b)(s-c)} + \frac{a+c}{b}\sqrt{ac(s-a)(s-c)} + \frac{a+b}{c}\sqrt{ab(s-a)(s-b)} Splitting b + c a = b a + c a \frac{b+c}{a} = \frac{b}{a} + \frac{c}{a} and so on (treating P P as a sum of six terms), the AM/GM inequality gives P 6 [ b c a 2 b c ( s b ) ( s c ) × a c b 2 a c ( s a ) ( s b ) × a b c 2 a b ( s a ) ( s b ) ] 1 6 = 6 [ a 2 b 2 c 2 ( s a ) 2 ( s b ) 2 ( s c ) 2 ] 1 6 = 6 [ a b c ( s a ) ( s b ) ( s c ) ] 1 3 = 6 [ a b c Δ 2 s ] 1 3 6 [ 8 Δ 3 3 3 ] 1 3 = 4 3 Δ \begin{aligned} P & \ge 6\Big[\frac{bc}{a^2} bc(s-b)(s-c) \times \frac{ac}{b^2} ac(s-a)(s-b) \times \frac{ab}{c^2} ab(s-a)(s-b)\Big]^{\frac16} \\ & = 6\Big[a^2b^2c^2(s-a)^2(s-b)^2(s-c)^2\Big]^{\frac16} \; = \; 6\Big[abc(s-a)(s-b)(s-c)\Big]^{\frac13} \\ & = 6\Big[\frac{abc\Delta^2}{s}\Big]^{\frac13} \; \ge \; 6\Big[\frac{8\Delta^3}{3\sqrt{3}}\Big]^{\frac13} \; = \; 4\sqrt{3}\Delta \end{aligned} with equality when the triangle is equilateral. In this case, with Δ = 1 \Delta = 1 , we see that the minimum value of P P is 4 3 \boxed{4\sqrt{3}} .

Great solution! We can also get A D AD by applying Ptolemy's theorem and cosine rule: A D . B C = A B . C D + A C . B D A D = ( b + c ) C D a = b + c 2 cos A 2 = ( b + c ) b c 2 s ( s a ) AD.BC=AB.CD+AC.BD\Longrightarrow AD=\frac { \left( b+c \right) CD }{ a } =\frac { b+c }{ 2\cos { \frac { A }{ 2 } } } =\frac { \left( b+c \right) \sqrt { bc } }{ 2\sqrt { s\left( s-a \right) } }

Linkin Duck - 4 years, 1 month ago

Log in to reply

Nice approach. I could also improve the final inequality by first applying the AM/GM inequalities a + b 2 a b a+b\ge2\sqrt{ab} , a + c 2 a c a+c\ge2\sqrt{ac} , b + c b c b+c \ge\sqrt{bc} to C F CF , B E BE , A D AD respectively, so that A D b c s ( s a ) AD \ge \frac{bc}{\sqrt{s(s-a)}} for example, before the main use of the AM/GM inequality.

Mark Hennings - 4 years, 1 month ago

Log in to reply

Yes, that's really nice. Should you re-post the improved solution :-)?

Linkin Duck - 4 years, 1 month ago
Aakash Khandelwal
Apr 23, 2017

Form a cyclic expression in (a,b,c) . Minimize using AM-GM

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...