Heron kills it

Geometry Level 4

A triangle with sides of a 2 + 16 b 2 \sqrt{a^2+16b^2} , 9 a 2 + 4 b 2 \sqrt{9a^2+4b^2} , and 2 a 2 + b 2 2\sqrt{a^2+b^2} such that a a and b b are positive integers with area 30 30 is given. Find the number of ordered pairs ( a , b ) (a,b) that satisfy this restriction.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mietantei Conan
Feb 11, 2015

proof without words

Jared Low
Jan 26, 2015

Using Heron's formulae for triangle area with sides x , y , z x,y,z where the area is 1 4 2 x 2 y 2 + 2 y 2 z 2 + 2 z 2 x 2 x 4 y 4 z 4 \frac{1}{4}\sqrt{2x^2y^2+2y^2z^2+2z^2x^2-x^4-y^4-z^4} , we subsitute x = a 2 + 16 b 2 , y = 9 a 2 + 4 b 2 , z = 4 a 2 + 4 b 2 x=\sqrt{a^2+16b^2},y=\sqrt{9a^2+4b^2},z=\sqrt{4a^2+4b^2} , expand and then reduce our expression to get an area of:

1 4 2 ( ( a 2 + 16 b 2 ) ( 9 a 2 + 4 b 2 ) + ( 9 a 2 + 4 b 2 ) ( 4 a 2 + 4 b 2 ) + ( 4 a 2 + 4 b 2 ) ( a 2 + 16 b 2 ) ) ( ( a 2 + 16 b 2 ) 2 + ( 9 a 2 + 4 b 2 ) 2 + ( 4 a 2 + 4 b 2 ) 2 ) \frac{1}{4}\sqrt{2((a^2+16b^2)(9a^2+4b^2)+(9a^2+4b^2)(4a^2+4b^2)+(4a^2+4b^2)(a^2+16b^2))-((a^2+16b^2)^2+(9a^2+4b^2)^2+(4a^2+4b^2)^2)}

= 1 4 400 a 2 b 2 = 5 a b = 30 =\frac{1}{4}\sqrt{400a^2b^2}=5ab=30

We thus desire to find all ordered pairs of positive integers ( a , b ) (a,b) where a b = 6 ab=6 . There are then 4 \boxed{4} such pairs: ( 1 , 6 ) , ( 2 , 3 ) , ( 3 , 2 ) , ( 6 , 1 ) (1,6),(2,3),(3,2),(6,1) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...