Hexadecimal Equations (Problem 5 5 , Version 3 3 )

( 2 × 4 ) ! ) E + ( ( 2 × 5 ) ! ) F = (2 \times 4)!)E + ((2 \times 5)!)F = ?

Give your answer in denary.

Bonus: convert the answer to hexadecimal

Note: everything in the brackets is denary.

Note 2 2 : Perform the calculations in the brackets and then remove the brackets.


The answer is 912831005.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yajat Shamji
Jul 4, 2020

E = 14 E = 14

F = 15 F = 15

2 × 4 = 8 2 \times 4 = 8

8 ! = 40320 8! = 40320

2 × 5 = 10 2 \times 5 = 10

10 ! = 3628800 10! = 3628800

40320 E + 3628800 F 40320E + 3628800F

4 × 1 6 5 + 0 × 1 6 4 + 3 × 1 6 3 + 2 × 1 6 2 + 0 × 1 6 1 = 4 × 1048576 + 3 × 4096 + 2 × 256 = 4194304 + 12288 + 512 = 4207104 + 14 = 4207118 4 \times 16^5 + 0 \times 16^4 + 3 \times 16^3 + 2 \times 16^2 + 0 \times 16^1 = 4 \times 1048576 + 3 \times 4096 + 2 \times 256 = 4194304 + 12288 + 512 = 4207104 + 14 = 4207118

3 × 1 6 7 + 6 × 1 6 6 + 2 × 1 6 5 + 8 × 1 6 4 + 8 × 1 6 3 + 0 × 1 6 2 + 0 × 1 6 1 = 3 × 268435456 + 6 × 16777216 + 2 × 1048576 + 8 × 65536 + 8 × 4096 = 805306368 + 100663296 + 2097152 + 524288 + 32768 = 908623872 + 15 = 908623887 3 \times 16^7 + 6 \times 16^6 + 2 \times 16^5 + 8 \times 16^4 + 8 \times 16^3 + 0 \times 16^2 + 0 \times 16^1 = 3 \times 268435456 + 6 \times 16777216 + 2 \times 1048576 + 8 \times 65536 + 8 \times 4096 = 805306368 + 100663296 + 2097152 + 524288 + 32768 = 908623872 + 15 = 908623887

908623887 + 4207118 908623887 + 4207118

912831005 912831005

Answer 912831005 \rightarrow \fbox{912831005}

For the Bonus:

912831005 912831005

Do division by 16 16 to obtain the L.H.S of the modulo calculations.

912831005 ( mod ( 16 ) ) = 13 912831005 (\text{mod}(16)) = 13

57051937 ( mod ( 16 ) ) = 1 57051937 (\text{mod}(16)) = 1

3565746 ( mod ( 16 ) ) = 2 3565746 (\text{mod}(16)) = 2

222859 ( mod ( 16 ) ) = 11 222859 (\text{mod}(16)) = 11

13928 ( mod ( 16 ) ) = 8 13928 (\text{mod}(16)) = 8

870 ( mod ( 16 ) ) = 6 870 (\text{mod}(16)) = 6

54 ( mod ( 16 ) ) = 6 54 (\text{mod}(16)) = 6

3 ( mod ( 16 ) ) = 3 3 (\text{mod}(16)) = 3

Read the remainders from bottom to top:

3668112113 3668112113

Since 11 = B , 13 = D 11 = B, 13 = D

3668 B 21 D 3668B21D

Bonus Answer 3668 B 21 D \rightarrow 3668B21D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...