Hexadecimal magic fraction

In decimal notation , 1 81 = 0.01234567901234567901234 \dfrac 1{81} = 0.01234567901234567901234\dots

In analogy to this, we wish to find a fraction for which in hexadecimal notation 1 n = 0.0123456789 A B C D F 0123456789 A B C D F 01 \dfrac 1{n} = 0.0123456789ABCDF0123456789ABCDF01\dots What is the value of n n , expressed as a hexadecimal numeral?

Bonus: Generalize this for number base b b .

E1 ED There is no such number 51 81

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Claim: in number base b b , 1 ( b 1 ) 2 = 0. 01234 ( b 4 ) ( b 3 ) ( b 1 ) 01234 . \frac 1{(b-1)^2} = 0.\overline{01234\cdots(b-4)(b-3)(b-1)}01234\dots.

Substituting b = 16 b = 16 gives the denominator ( 16 1 ) 2 = 225 = E 1 16 . (16-1)^2 = 225 = \boxed{E1}_{16}.

Proof: Let a a be the repeating part: a = 1234 ( b 4 ) ( b 3 ) ( b 1 ) = 1 + n = 1 b 2 n b b 2 n . a = \overline{1234\cdots(b-4)(b-3)(b-1)} = 1 + \sum_{n=1}^{b-2} n\cdot b^{b-2-n}. Mulitply this by b 1 b-1 : a ( b 1 ) = ( b 1 ) + n = 1 b 2 n ( b 1 ) b b 2 n = ( b 1 ) + n = 1 b 2 n b b 1 n n = 1 b 2 n b b 2 n = ( b 1 ) + n = 1 b 2 n b b 1 n n = 2 b 1 ( n 1 ) b b 1 n = ( b 1 ) + n = 1 b 1 ( n ( n 1 ) ) b b 1 n ( b 1 ) = n = 1 b 1 b b 1 n = n = 0 b 2 b n ; a(b-1) = (b-1) + \sum_{n=1}^{b-2} n(b-1)\cdot b^{b-2-n} \\ = (b-1) + \sum_{n=1}^{b-2} n \cdot b^{b-1-n} - \sum_{n=1}^{b-2} n \cdot b^{b-2-n} \\ = (b-1) + \sum_{n=1}^{b-2} n \cdot b^{b-1-n} - \sum_{n=2}^{b-1} (n-1) \cdot b^{b-1-n} \\ = (b-1) + \sum_{n=1}^{b-1} \left(n-(n-1)\right) \cdot b^{b-1-n} - (b-1) \\ = \sum_{n=1}^{b-1} b^{b-1-n} = \sum_{n=0}^{b-2} b^n; multiply again by b 1 b-1 : a ( b 1 ) 2 = n = 0 b 2 ( b 1 ) b n = n = 1 b 1 b n n = 0 b 2 b n = b b 1 1. a(b-1)^2 = \sum_{n=0}^{b-2} (b-1) \cdot b^n \\ = \sum_{n=1}^{b-1} b^n - \sum_{n=0}^{b-2} b^n \\ = b^{b-1} - 1. The repeated fraction is x = 0.00 00100 00100 a = ( p = 1 b p ( b 1 ) ) a , x = 0.00\dots00100\dots00100\dots\ \cdot\ a = \left(\sum_{p=1}^\infty b^{-p\cdot(b-1)}\right)\cdot a, so that x ( b 1 ) 2 = 0.00 00100 00100 a ( b 1 ) 2 = 0.00 00100 00100 ( b b 1 1 ) = p = 1 b p ( b 1 ) + b 1 p = 1 b p ( b 1 ) = p = 0 b p ( b 1 ) p = 1 b p ( b 1 ) = b 0 = 1. x(b-1)^2 = 0.00\dots00100\dots00100\dots\ \cdot\ a (b-1)^2 \\ = 0.00\dots00100\dots00100\dots\ \cdot\ (b^{b-1} - 1) \\ = \sum_{p=1}^\infty b^{-p\cdot(b-1) + b-1} - \sum_{p=1}^\infty b^{-p\cdot(b-1)} \\ = \sum_{p=0}^\infty b^{-p\cdot(b-1)} - \sum_{p=1}^\infty b^{-p\cdot(b-1)} \\ = b^0 = 1. From x b 2 = 1 xb^2 = 1 it follows that 1 / b 2 = x 1/b^2 = x .

Finley Hudson
Apr 7, 2016

In answer to the bonus question, it's 1 ( b 1 ) 2 \frac{1}{(b-1)^2}

Applying this to the main problem, n = 15² = 225. So in hexadecimal n = E1

Do you have a proof?

Arjen Vreugdenhil - 5 years, 2 months ago

Log in to reply

For the main problem, the recurring decimal can be written as 0123456789 A B C D F F F F F F F F F F F F F F F F \frac {0123456789ABCDF}{FFFFFFFFFFFFFFF} this simplifies to 1 E 1 \frac {1}{E1}

Finley Hudson - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...