Consider a hexagon inscribed in a circle of radius r . If the hexagon has two sides of length 2 , two sides of length 7 , and two sides of length 1 1 , find r .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the side of length 2 , 7 and 1 1 subtend an angle of α , β and γ respectively at the center of circle. Radius of circle is r . Then we get,
2 r sin ( 2 α ) = 2 ⋯ Eq. 1
2 r sin ( 2 β ) = 7 ⋯ Eq. 2
2 r sin ( 2 γ ) = 1 1 ⋯ Eq. 3
2 α + 2 β + 2 γ = 3 6 0 °
⇒ 2 α + 2 β + 2 γ = 9 0 ° ⋯ Eq. 4
Substituting γ from Eq. 4 into Eq. 3 we get,
2 r sin ( 9 0 ° − 2 α + β ) = 1 1
2 r cos ( 2 α + β ) = 1 1 ⋯ Eq. 5
Eliminating r from Eq. 1 and Eq. 2 we get,
2 sin ( 2 α ) = 7 sin ( 2 β )
⇒ 7 sin ( 2 α ) = 2 sin ( 2 β )
⇒ 4 9 sin 2 ( 2 α ) = 4 sin 2 ( 2 β ) ⋯ Eq. 6
Eliminating r from Eq. 1 and Eq. 5 we get,
2 sin ( 2 α ) = 1 1 cos ( 2 α + β )
⇒ 1 1 sin ( 2 α ) = 2 cos ( 2 α + β )
⇒ 1 1 sin ( 2 α ) = 2 cos ( 2 α ) cos ( 2 β ) − 2 sin ( 2 α ) sin ( 2 β )
⇒ sin ( 2 α ) ( 1 1 + 2 sin ( 2 β ) ) = 2 cos ( 2 α ) cos ( 2 β )
Squaring the equation we get,
⇒ sin 2 ( 2 α ) ( 1 1 + 2 sin ( 2 β ) ) 2 = 4 cos 2 ( 2 α ) cos 2 ( 2 β )
Multiplying 4 9 on both sides
4 9 sin 2 ( 2 α ) ( 1 1 + 2 sin ( 2 β ) ) 2 = 4 cos 2 ( 2 β ) ( 4 9 − 4 9 sin 2 ( 2 α ) )
Using Eq. 6 in the above equation we get,
4 sin 2 ( 2 β ) ( 1 1 + 2 sin ( 2 β ) ) 2 = 4 cos 2 ( 2 β ) ( 4 9 − 4 sin 2 ( 2 β ) )
Let sin ( 2 β ) = t . Then
t 2 ( 1 1 + 2 t ) 2 = ( 1 − t 2 ) ( 4 9 − 4 t 2 )
⇒ 4 4 t 3 + 1 7 4 t 2 − 4 9 = 0
⇒ ( 2 t − 1 ) ( 2 2 t 2 + 9 8 t + 4 9 ) = 0
Since 2 β ≤ 9 0 ° ⇒ sin ( 2 β ) = t ≥ 0
For t ≥ 0 , second factor can never be 0 . So
2 t − 1 = 0
⇒ t = sin ( 2 β ) = 2 1
Putting this in Eq. 2 we get
2 r 2 1 = 7
⇒ r = 7
Let the 2 units chord subtends an angle α at the centre of the circle, and the 7 units chord subtends an angle β . Then
sin ( 2 α ) = r 1 , sin ( 2 β ) = 2 r 7 , cos ( 2 α + β ) = 2 r 1 1 .
Solving we get r = 7 units.
Problem Loading...
Note Loading...
Set Loading...
Draw sides of lengths 2 , 7 , and 1 1 next to each other. Then we have cyclic quadrilateral A B C D with A D = 2 r being the diameter of the circle. By Ptolemy's theorem ,
A C ⋅ B D ( 2 r ) 2 − 1 1 2 ⋅ ( 2 r ) 2 − 2 2 ( 4 r 2 − 1 2 1 ) ( 4 r 2 − 4 ) 1 6 r 4 − 5 0 0 r 2 + 4 8 4 1 6 r 4 − 6 9 6 r 2 − 6 1 6 r 2 r 3 − 8 7 r − 7 7 ( r − 7 ) ( 2 r 2 + 1 4 r + 1 1 ) = B C ⋅ A D + A B ⋅ C D = 1 4 r + 2 2 = 1 4 2 r 2 + 2 ( 1 4 ) ( 2 2 ) r + 2 2 2 = 1 9 6 r 2 + 6 1 6 r + 4 8 4 = 0 = 0 = 0 Squaring both sides Divide both sides by 8 r
⟹ r = ⎩ ⎪ ⎨ ⎪ ⎧ 7 2 3 3 − 7 < 0 2 − 3 3 − 7 < 0 . Therefore r = 7 .