hexagon in a circle

Geometry Level pending

Consider a hexagon inscribed in a circle of radius r r . If the hexagon has two sides of length 2 2 , two sides of length 7 7 , and two sides of length 11 11 , find r r .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 14, 2020

Draw sides of lengths 2 2 , 7 7 , and 11 11 next to each other. Then we have cyclic quadrilateral A B C D ABCD with A D = 2 r AD=2r being the diameter of the circle. By Ptolemy's theorem ,

A C B D = B C A D + A B C D ( 2 r ) 2 1 1 2 ( 2 r ) 2 2 2 = 14 r + 22 Squaring both sides ( 4 r 2 121 ) ( 4 r 2 4 ) = 1 4 2 r 2 + 2 ( 14 ) ( 22 ) r + 2 2 2 16 r 4 500 r 2 + 484 = 196 r 2 + 616 r + 484 16 r 4 696 r 2 616 r = 0 Divide both sides by 8 r 2 r 3 87 r 77 = 0 ( r 7 ) ( 2 r 2 + 14 r + 11 ) = 0 \begin{aligned} AC\cdot BD & = BC \cdot AD + AB \cdot CD \\ \sqrt{(2r)^2-11^2} \cdot \sqrt{(2r)^2-2^2} & = 14r + 22 & \small \blue{\text{Squaring both sides}} \\ (4r^2-121)(4r^2-4) & = 14^2r^2 + 2(14)(22)r + 22^2 \\ 16r^4 - 500 r^2 + 484 & = 196 r^2 + 616 r + 484 \\ 16r^4-696r^2-616r & = 0 & \small \blue{\text{Divide both sides by }8r } \\ 2r^3 - 87r - 77 & = 0 \\ (r-7)(2r^2+14r+11) & = 0 \end{aligned}

r = { 7 3 3 7 2 < 0 3 3 7 2 < 0 \implies r = \begin{cases} 7 \\ \frac {3\sqrt 3-7}2 < 0 \\ \frac {-3\sqrt 3-7}2 < 0 \end{cases} . Therefore r = 7 r=\boxed 7 .

Let the side of length 2 , 7 2\,,\,7 and 11 11 subtend an angle of α , β \alpha\,,\,\beta and γ \gamma respectively at the center of circle. Radius of circle is r r . Then we get,

2 r sin ( α 2 ) = 2 Eq. 1 \displaystyle 2r\sin\Big(\frac{\alpha}{2}\Big) = 2\hspace{20pt}\cdots\text{Eq. 1}

2 r sin ( β 2 ) = 7 Eq. 2 \displaystyle 2r\sin\Big(\frac{\beta}{2}\Big) = 7\hspace{20pt}\cdots\text{Eq. 2}

2 r sin ( γ 2 ) = 11 Eq. 3 \displaystyle 2r\sin\Big(\frac{\gamma}{2}\Big) = 11\hspace{20pt}\cdots\text{Eq. 3}

2 α + 2 β + 2 γ = 360 ° \displaystyle 2\alpha + 2\beta + 2\gamma = 360\degree

α 2 + β 2 + γ 2 = 90 ° Eq. 4 \displaystyle\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2} = 90\degree\hspace{20pt}\cdots\text{Eq. 4}

Substituting γ \gamma from Eq. 4 into Eq. 3 we get,

2 r sin ( 90 ° α + β 2 ) = 11 \displaystyle 2r\sin\Big(90\degree - \frac{\alpha + \beta}{2}\Big) = 11

2 r cos ( α + β 2 ) = 11 Eq. 5 \displaystyle 2r\cos\Big(\frac{\alpha + \beta}{2}\Big) = 11 \hspace{20pt}\cdots\text{Eq. 5}

Eliminating r r from Eq. 1 and Eq. 2 we get,

sin ( α 2 ) 2 = sin ( β 2 ) 7 \displaystyle \frac{\sin\Big(\frac{\alpha}{2}\Big)}{2} = \frac{\sin\Big(\frac{\beta}{2}\Big)}{7}

7 sin ( α 2 ) = 2 sin ( β 2 ) \displaystyle\Rightarrow 7\sin\Big(\frac{\alpha}{2}\Big) = 2\sin\Big(\frac{\beta}{2}\Big)

49 sin 2 ( α 2 ) = 4 sin 2 ( β 2 ) Eq. 6 \displaystyle\Rightarrow 49\sin^2\Big(\frac{\alpha}{2}\Big) = 4\sin^2\Big(\frac{\beta}{2}\Big)\hspace{20pt}\cdots\text{Eq. 6}

Eliminating r r from Eq. 1 and Eq. 5 we get,

sin ( α 2 ) 2 = cos ( α + β 2 ) 11 \displaystyle \frac{\sin\Big(\frac{\alpha}{2}\Big)}{2} = \frac{\cos\Big(\frac{\alpha + \beta}{2}\Big)}{11}

11 sin ( α 2 ) = 2 cos ( α + β 2 ) \Rightarrow 11\sin\Big(\frac{\alpha}{2}\Big) = 2\cos\Big(\frac{\alpha + \beta}{2}\Big)

11 sin ( α 2 ) = 2 cos ( α 2 ) cos ( β 2 ) 2 sin ( α 2 ) sin ( β 2 ) \Rightarrow 11\sin\Big(\frac{\alpha}{2}\Big) = 2\cos\Big(\frac{\alpha}{2}\Big)\cos\Big(\frac{\beta}{2}\Big) - 2\sin\Big(\frac{\alpha}{2}\Big)\sin\Big(\frac{\beta}{2}\Big)

sin ( α 2 ) ( 11 + 2 sin ( β 2 ) ) = 2 cos ( α 2 ) cos ( β 2 ) \Rightarrow \sin\Big(\frac{\alpha}{2}\Big)\bigg(11 + 2\sin\Big(\frac{\beta}{2}\Big)\bigg) = 2\cos\Big(\frac{\alpha}{2}\Big)\cos\Big(\frac{\beta}{2}\Big)

Squaring the equation we get,

sin 2 ( α 2 ) ( 11 + 2 sin ( β 2 ) ) 2 = 4 cos 2 ( α 2 ) cos 2 ( β 2 ) \displaystyle\Rightarrow \sin^2\Big(\frac{\alpha}{2}\Big)\bigg(11 + 2\sin\Big(\frac{\beta}{2}\Big)\bigg)^2 = 4\cos^2\Big(\frac{\alpha}{2}\Big)\cos^2\Big(\frac{\beta}{2}\Big)

Multiplying 49 49 on both sides

49 sin 2 ( α 2 ) ( 11 + 2 sin ( β 2 ) ) 2 = 4 cos 2 ( β 2 ) ( 49 49 sin 2 ( α 2 ) ) \displaystyle 49\sin^2\Big(\frac{\alpha}{2}\Big)\bigg(11 + 2\sin\Big(\frac{\beta}{2}\Big)\bigg)^2 = 4\cos^2\Big(\frac{\beta}{2}\Big)\bigg(49 - 49\sin^2\Big(\frac{\alpha}{2}\Big)\bigg)

Using Eq. 6 in the above equation we get,

4 sin 2 ( β 2 ) ( 11 + 2 sin ( β 2 ) ) 2 = 4 cos 2 ( β 2 ) ( 49 4 sin 2 ( β 2 ) ) \displaystyle 4\sin^2\Big(\frac{\beta}{2}\Big)\bigg(11 + 2\sin\Big(\frac{\beta}{2}\Big)\bigg)^2 = 4\cos^2\Big(\frac{\beta}{2}\Big)\bigg(49 - 4\sin^2\Big(\frac{\beta}{2}\Big)\bigg)

Let sin ( β 2 ) = t \sin\Big(\frac{\beta}{2}\Big) = t . Then

t 2 ( 11 + 2 t ) 2 = ( 1 t 2 ) ( 49 4 t 2 ) \displaystyle t^2(11 + 2t)^2 = (1 - t^2)(49 - 4t^2)

44 t 3 + 174 t 2 49 = 0 \displaystyle\Rightarrow 44t^3 + 174t^2 - 49 = 0

( 2 t 1 ) ( 22 t 2 + 98 t + 49 ) = 0 \displaystyle\Rightarrow (2t - 1)(22t^2 +98t + 49) = 0

Since β 2 90 ° sin ( β 2 ) = t 0 \frac{\beta}{2} \leq 90\degree \Rightarrow \sin\Big(\frac{\beta}{2}\Big) = t \geq 0

For t 0 t \geq 0 , second factor can never be 0 0 . So

2 t 1 = 0 2t - 1 = 0

t = sin ( β 2 ) = 1 2 \displaystyle\Rightarrow t = \sin\Big(\frac{\beta}{2}\Big) = \frac{1}{2}

Putting this in Eq. 2 we get

2 r 1 2 = 7 \displaystyle 2r\frac{1}{2} = 7

r = 7 \displaystyle\Rightarrow r =7

Let the 2 2 units chord subtends an angle α α at the centre of the circle, and the 7 7 units chord subtends an angle β β . Then

sin ( α 2 ) = 1 r , sin ( β 2 ) = 7 2 r , cos ( α + β 2 ) = 11 2 r \sin (\frac{α}{2})=\frac{1}{r},\sin (\frac{β}{2})=\frac{7}{2r},\cos (\frac{α+β}{2})=\frac{11}{2r} .

Solving we get r = 7 r=\boxed 7 units.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...