Hexagon Interior Point

Geometry Level 4

A regular hexagon A B C D E F ABCDEF is centered at the origin and has vertex A A lying on the positive x x -axis, and the labelling is counter clockwise. A point Q = ( Q x , Q y ) Q = ( Q_x, Q_y ) lies inside the hexagon, such that [ Q A B ] = 10 [QAB] = 10 , [ Q C D ] = 17 [QCD] = 17 , and [ Q E F ] = 5 [QEF] = 5 . If R R is the circumradius of the hexagon (which is also equal to the side length), then find 1000 ( R + Q x + Q y ) \lfloor 1000( R + Q_x + Q_y) \rfloor .


The answer is 4308.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Mar 21, 2019

Extend sides A B AB , C D CD , and E F EF to make equilateral M N P \triangle MNP , as shown below:

M N P \triangle MNP is made up of 9 9 equilateral triangles, 6 6 of which make up hexagon A B C D E F ABCDEF . Therefore, A M N P = 3 2 A A B C D E F A_{\triangle MNP} = \frac{3}{2}A_{ABCDEF} .

M N P \triangle MNP is also made up of triangles M Q N \triangle MQN , M Q P \triangle MQP , and N Q P \triangle NQP , so A M N P = A M Q N + A M Q P + A N Q P A_{\triangle MNP} = A_{\triangle MQN} + A_{\triangle MQP} + A_{\triangle NQP} .

A Q B \triangle AQB has the same height but a base that is 1 3 \frac{1}{3} that of N Q P \triangle NQP , so A A Q B = 1 3 A N Q P A_{\triangle AQB} = \frac{1}{3}A_{\triangle NQP} . Likewise, A C Q D = 1 3 A M Q P A_{\triangle CQD} = \frac{1}{3}A_{\triangle MQP} and A E Q F = 1 3 A M Q N A_{\triangle EQF} = \frac{1}{3}A_{\triangle MQN} .

Therefore, A A Q B + A C Q D + A E Q F A_{\triangle AQB} + A_{\triangle CQD} + A_{\triangle EQF} = = 1 3 ( A N Q P + A M Q P + A M Q N ) \frac{1}{3}(A_{\triangle NQP} + A_{\triangle MQP} + A_{\triangle MQN}) = = 1 3 ( A M N P ) \frac{1}{3}(A_{\triangle MNP}) = = 1 3 ( 3 2 A A B C D E F ) \frac{1}{3} (\frac{3}{2}A_{ABCDEF}) = = 1 2 A A B C D E F \frac{1}{2}A_{ABCDEF} .


In the problem, A A Q B = 10 A_{\triangle AQB} = 10 , A C Q D = 17 A_{\triangle CQD} = 17 , A E Q F = 5 A_{\triangle EQF} = 5 , and A A B C D E F = 3 3 2 R 2 A_{ABCDEF} = \frac{3\sqrt{3}}{2}R^2 , so 10 + 17 + 5 = 1 2 3 3 2 R 2 10 + 17 + 5 = \frac{1}{2} \cdot \frac{3\sqrt{3}}{2}R^2 which solves to R = 8 12 4 3 R = \frac{8\sqrt[4]{12}}{3} .

E Q F \triangle EQF has an area of A E Q F = 5 A_{\triangle EQF} = 5 , a base of b E Q F = R b_{\triangle EQF} = R , and a height of h E Q F = Q y + 3 2 R h_{\triangle EQF} = Q_y + \frac{\sqrt{3}}{2}R , and using A = 1 2 b h A = \frac{1}{2}bh and R = 8 12 4 3 R = \frac{8\sqrt[4]{12}}{3} this solves to Q y = 17 108 4 24 Q_y = -\frac{17\sqrt[4]{108}}{24} .

A Q B \triangle AQB has an area of A A Q B = 10 A_{\triangle AQB} = 10 , a base of b A Q B = R b_{\triangle AQB} = R , and using A = 1 2 b h A = \frac{1}{2}bh it has a height of h A Q B = 20 R h_{\triangle AQB} = \frac{20}{R} . As a side of an equilateral triangle with a length of 3 R 3R on centered at the origin, N P NP has a slope of m = tan 120 ° = 3 m = \tan 120° = -\sqrt{3} and a y y -intercept of 2 3 3 2 3 R = 3 R \frac{2}{3} \cdot \frac{\sqrt{3}}{2} 3R = \sqrt{3}R , for an equation of y = 3 x + 3 R y = -\sqrt{3}x + \sqrt{3}R . A line parallel to it with Q Q on it will have the same slope as N P NP but be 20 R \frac{20}{R} away on its perpendicular, which is 40 R \frac{40}{R} less than the N P NP 's y y -intercept of 3 R \sqrt{3}R . Therefore, Q Q is on the line y = 3 x + 3 R 40 R y = -\sqrt{3}x + \sqrt{3}R - \frac{40}{R} . Since Q y = 17 108 4 24 Q_y = -\frac{17\sqrt[4]{108}}{24} and R = 8 12 4 3 R = \frac{8\sqrt[4]{12}}{3} , Q x Q_x solves to Q x = 7 12 4 8 Q_x = \frac{7\sqrt[4]{12}}{8} .

Therefore, 1000 ( R + Q x + Q y ) = 1000 ( 8 12 4 3 + 7 12 4 8 + 17 108 4 24 ) = 4308 \lfloor 1000(R + Q_x + Q_y) \rfloor = \lfloor 1000(\frac{8\sqrt[4]{12}}{3} + \frac{7\sqrt[4]{12}}{8} + -\frac{17\sqrt[4]{108}}{24}) \rfloor = \boxed{4308} .

Chew-Seong Cheong
Mar 20, 2019

Frankly, I suspect, the two sums of areas of alternate internal triangles of a regular polygon of even number of sides are equal. The proof for hexagon is given below. Therefore 10 + 17 + 5 = 32 10+17+5 = 32 is half the area of the regular hexagon. Then the area of the regular hexagon is 64 64 and the area of one of the six central equilateral triangle is 64 6 \dfrac {64}6 and 3 4 R 2 = 64 6 \dfrac {\sqrt 3} 4R^2 = \dfrac {64}6 R = 8 2 3 3 4.963225915 \implies R = \dfrac {8\sqrt{2\sqrt 3}}3 \approx 4.963225915 .

Consider Q E F \triangle QEF , let its height be h h , then [ Q E F ] = 1 2 h E F = 5 [QEF] = \dfrac 12 h \overline{EF} = 5 . Since E F = R \overline{EF} = R , h = 10 R \implies h = \dfrac {10}R . Therefore, Q y Q_y = 3 2 R + h = - \dfrac {\sqrt 3}2R + h = 3 2 R + 10 R = - \dfrac {\sqrt 3}2R + \dfrac {10}R 2.283461105 \approx - 2.283461105 .

Consider Q A B \triangle QAB , we can find its area using the coordinates of its vertices as follows:

( Q x A x ) ( Q y + A y ) 2 + ( A x B x ) ( A y + B y ) 2 + ( B x Q x ) ( B y + Q y ) 2 = [ Q A B ] = 10 ( O x R ) ( O y + 0 ) + ( R R 2 ) ( 0 + 3 R 2 ) + ( R 2 Q x ) ( 3 R 2 + Q y ) = 20 3 2 R 2 3 2 R Q x 1 2 R Q y = 20 R Q x Q y 3 = 40 3 R Q x = 3 2 R 50 3 R 1.628558503 \begin{aligned} \frac {(Q_x-A_x)(Q_y+A_y)}2 + \frac {(A_x-B_x)(A_y+B_y)}2 + \frac {(B_x-Q_x)(B_y+Q_y)}2 & = [QAB] = 10 \\ \left(O_x - R\right)\left(O_y + 0 \right) + \left(R - \frac R2 \right)\left(0 + \frac {\sqrt 3R}2 \right) + \left(\frac R2 - Q_x \right)\left(\frac {\sqrt 3R}2 + Q_y \right) & = 20 \\ \frac {\sqrt 3}2R^2 - \frac {\sqrt 3}2RQ_x - \frac 12 RQ_y & = 20 \\ R - Q_x - \frac {Q_y}{\sqrt 3} & = \frac {40}{\sqrt 3R} \\ \implies Q_x & = \frac 32 R - \frac {50}{\sqrt 3R} \\ & \approx 1.628558503 \end{aligned}

Therefore, 1000 ( R + Q x + Q y ) = 4308 \left \lfloor 1000 (R+Q_x+Q_y)\right \rfloor = \boxed{4308} .


Proof: Using coordinates of vertices to find the area of triangle:

{ [ Q A B ] = 3 4 R 2 1 4 R Q y 3 4 R Q x [ Q C D ] = 3 4 R 2 1 4 R Q y + 3 4 R Q x [ Q E F ] = 3 4 R 2 + 1 2 R Q y \begin{cases} [QAB] = \frac {\sqrt 3}4R^2 - \frac 14 RQ_y - \frac {\sqrt 3}4RQ_x \\ [QCD] = \frac {\sqrt 3}4R^2 - \frac 14 RQ_y + \frac {\sqrt 3}4RQ_x \\ [QEF] = \frac {\sqrt 3}4R^2 + \frac 12 RQ_y \end{cases}

[ Q A B ] + [ Q C D ] + [ Q E F ] = 3 3 4 R 2 = 1 2 [ A B C D E F ] \implies [QAB] + [QCD] + [QEF] = \frac {3\sqrt 3}4 R^2 = \frac 12 [ABCDEF] .

Niranjan Khanderia - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...