Hexagon 's Segment

Geometry Level 4

A B C D E F ABCDEF is a regular hexagon, with A B = 1 cm AB = 1 \text{ cm} . Point G G lies on D C DC , such that D G = G C DG = GC . If the length of B G BG is in the form of a b cm \dfrac{\sqrt{a}}{b} \text{ cm} , where a , b a,b are coprime positive integer, with a a isn't a perfect square, find a + b a+b .


Try another problem on my set! Let's Practice


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

I s o s c e l e s Δ B C D , v e r t e x 120 , b a s e , B D = 3 . T h e m e d i a n B H o f Δ B C D = 1 2 2 ( B D 2 + B C 2 ) D C 2 = 1 2 2 ( 3 + 1 ) 1 = 7 2 = a b . a + b = 9. Isosceles ~\Delta~BCD, ~~~vertex~ \angle~120,~~\therefore~ base, ~BD~=~\sqrt3. \\ The~median~BH~of ~\Delta~BCD=\frac 1 2 *\sqrt{2(BD^2+BC^2)-DC^2}=\frac 1 2 *\sqrt{2(3+1)-1}=\dfrac{\sqrt7} 2 =~\dfrac{\sqrt a} b.\\ a+b=\Huge 9.

Consider C J G : \triangle CJG:

s i n 30 = C J 1 2 sin~30=\dfrac{CJ}{\frac{1}{2}}

1 2 = C J 1 2 \dfrac{1}{2}=\dfrac{CJ}{\frac{1}{2}}

C J = 1 2 ( 1 2 ) = 1 4 CJ=\dfrac{1}{2}(\dfrac{1}{2})=\dfrac{1}{4}

By Pythagorean Theorem

G J = ( 1 2 ) 2 ( 1 4 ) 2 = 3 16 = 3 4 GJ=\sqrt{(\dfrac{1}{2})^2-(\dfrac{1}{4})^2}=\sqrt{\dfrac{3}{16}}=\dfrac{\sqrt{3}}{4}

It follows that

B J = 1 + C J = 1 + 1 4 = 5 4 BJ=1+CJ=1+\dfrac{1}{4}=\dfrac{5}{4}

Consider B J G \triangle BJG , by pythagorean theorem

B G = ( 5 4 ) 2 + ( 3 4 ) 2 = 28 16 = 7 4 = 7 2 BG=\sqrt{(\dfrac{5}{4})^2+(\dfrac{\sqrt{3}}{4})^2}=\sqrt{\dfrac{28}{16}}=\sqrt{\dfrac{7}{4}}=\dfrac{\sqrt{7}}{2}

Finally,

a = 7 a=7 and b = 2 b=2

a + b = 7 + 2 = a+b=7+2= 9 \boxed{9}

Fidel Simanjuntak
Apr 29, 2017

Here is a solution without cosine law

Guilherme Niedu
Apr 29, 2017

By cosine law:

B G 2 = B C 2 + C G 2 2 B C C G cos ( B C G ) \large \displaystyle \overline{BG}^2 = \overline{BC}^2 + \overline{CG}^2 - 2\cdot \overline{BC} \cdot \overline{CG} \cdot \cos(\angle BCG)

B G 2 = 1 2 + 1 2 2 2 1 1 2 ( 1 2 ) \large \displaystyle \overline{BG}^2 = 1^2 + \frac12 ^2 - 2\cdot 1 \cdot \frac12 \cdot \left ( - \frac12 \right)

B G 2 = 7 4 \large \displaystyle \overline{BG}^2 = \frac74

B G = 7 2 \color{#20A900} \boxed{\large \displaystyle \overline{BG} = \frac{\sqrt{7}}{2}}

So:

a = 7 , b = 2 , a + b = 9 \color{#3D99F6} \large \displaystyle a = 7, b = 2, \boxed{\large \displaystyle a+b=9}

Marta Reece
Apr 29, 2017

From law of cosines in B C G \triangle BCG we can get B G = 1 4 + 1 cos 12 0 = 7 2 BG=\sqrt{\frac{1}{4}+1-\cos120^\circ}=\frac{\sqrt{7}}{2}

7 + 2 = 9 7+2=\boxed{9}

I too first did it this way. However seeing this solution used another method of solution.

Niranjan Khanderia - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...