Hexagonal Pyramid.

Level pending

Let V p V_{p} be the volume of the largest hexagonal pyramid that can be inscribed in a sphere of radius R R .

In the hexagonal pyramid with volume V p V_{p} to the right, find the angle (in degrees) between two adjacent slant faces to two decimal places.


The answer is 129.52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 23, 2017

Let O P OP be the height H H of the hexagonal pyramid.

Let E : ( x 2 , 3 2 , 0 ) E: (\dfrac{-x}{2}, \dfrac{\sqrt{3}}{2}, 0) , A : ( x 2 , 3 2 , 0 ) A: (\dfrac{-x}{2}, \dfrac{-\sqrt{3}}{2}, 0) , F : ( x , 0 , 0 ) F: (-x,0,0) , P : ( 0 , 0 , H ) P: (0,0,H) .

F P = x i + 0 j + H k , E P = x 2 i 3 2 x j + H k , A P = x 2 i + 3 2 x j + H k \vec{FP} = x\vec{i} + 0\vec{j} + H\vec{k} , \:\ \vec{EP} = \dfrac{x}{2}\vec{i} - \dfrac{\sqrt{3}}{2} x\vec{j} + H\vec{k}, \:\ \vec{AP} = \dfrac{x}{2}\vec{i} + \dfrac{\sqrt{3}}{2} x\vec{j} + H\vec{k}

u = F P × E P = 3 2 x H i x H 2 j 3 2 x 2 k \vec{u} = \vec{FP} \times \vec{EP} = \dfrac{\sqrt{3}}{2} xH \vec{i} -\dfrac{xH}{2}\vec{j} - \dfrac{\sqrt{3}}{2} x^2\vec{k} and v = F P × A P = 3 2 x H i x H 2 j + 3 2 x 2 k \vec{v} = \vec{FP} \times \vec{AP} = \dfrac{-\sqrt{3}}{2} xH \vec{i} -\dfrac{xH}{2}\vec{j} + \dfrac{\sqrt{3}}{2} x^2\vec{k}

u v = x 2 4 ( 2 H 2 + 3 x 2 ) \vec{u} \cdot \vec{v} = \dfrac{-x^2}{4} (2 H^2 + 3 x^2) and u = v = x 2 4 H 2 + 3 x 2 cos ( θ ) = u v u v = ( 2 H 2 + 3 x 2 ) 4 H 2 + 3 x 2 |\vec{u}| = |\vec{v}| = \dfrac{x}{2} \sqrt{4H^2 + 3x^2} \implies \cos(\theta) = \dfrac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \dfrac{-(2H^2 + 3x^2)}{4H^2 + 3x^2} , where θ \theta is the angle between the two adjacent slant faces.

Let V s = 4 3 π R 3 V_{s} = \dfrac{4}{3}\pi R^3 be the volume of the sphere.

The Area A h e x a g o n = 3 3 2 x 2 V p = 3 2 x 2 H A_{hexagon} = \dfrac{3\sqrt{3}}{2} x^2 \implies V_{p} = \dfrac{\sqrt{3}}{2} x^2 H

In the right triangle above: A C = H R , B C = x , A B = R AC = H - R, \:\ BC = x, \:\ AB = R \implies x 2 = 2 H R H 2 V p ( H ) = 3 2 ( 2 H 2 R H 3 ) d V p d H = 3 2 H ( 4 R 3 H ) = 0 x^2 = 2HR - H^2 \implies V_{p}(H) = \dfrac{\sqrt{3}}{2} (2 H^2 R - H^3) \implies \dfrac{dV_{p}}{dH} = \dfrac{\sqrt{3}}{2} H(4R - 3H) = 0 H 0 H = 4 R 3 x 2 = 8 9 H \neq 0 \implies H = \dfrac{4R}{3} \implies x^2 = \dfrac{8}{9}

Using H 2 = 16 R 2 9 , x 2 = 8 R 2 9 H^2 = \dfrac{16 R^2}{9}, x^2 = \dfrac{8 R^2}{9} and cos ( θ ) = ( 2 H 2 + 3 x 2 ) 4 H 2 + 3 x 2 \cos(\theta) = \dfrac{-(2H^2 + 3x^2)}{4H^2 + 3x^2} \implies cos ( θ ) = 7 11 θ = 129.5 2 \cos(\theta) = \dfrac{-7}{11} \implies \theta = 129.52^\circ

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...