Hexagonal Pyramids.

Level pending

In the hexagonal pyramid above, find the measure of the angle made between two faces that minimizes the lateral surface area when the volume is held constant.

Express the result to five decimal places.


The answer is 131.81031.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 5, 2018

Let λ \lambda be the measure of the angle made between two faces.

B A = r i + 0 j + 0 k \vec{BA} = r\vec{i} + 0\vec{j} + 0\vec{k}

B C = r 2 i 3 2 r j + 0 k \vec{BC} = -\dfrac{r}{2}\vec{i} - \dfrac{\sqrt{3}}{2}r\vec{j} + 0\vec{k}

B Q = r 2 i 3 2 r j + h k \vec{BQ} = \dfrac{r}{2}\vec{i} - \dfrac{\sqrt{3}}{2}r\vec{j} + h\vec{k}

u = B Q X B A = 0 i + h r j + 3 2 r 2 k \vec{u} = \vec{BQ} \:\ X \:\ \vec{BA} = 0\vec{i} + hr\vec{j} + \dfrac{\sqrt{3}}{2}r^2\vec{k}

v = B Q X B C = 3 2 r h i 1 2 r h j 3 2 r 2 k \vec{v} = \vec{BQ} \:\ X \:\ \vec{BC} = \dfrac{\sqrt{3}}{2}rh\vec{i} - \dfrac{1}{2}rh\vec{j} - \dfrac{\sqrt{3}}{2}r^2\vec{k}

u v = r 2 ( 2 h 2 + 3 r 2 ) 4 \vec{u} \cdot \vec{v} = -\dfrac{r^2(2h^2 + 3r^2)}{4} and u = r 4 h 2 + 3 r 2 2 = v cos ( λ ) = 2 h 2 + 3 r 2 4 h 2 + 3 r 2 |\vec{u}| = \dfrac{r\sqrt{4h^2 + 3r^2}}{2} = |\vec{v}| \implies \cos(\lambda) = -\dfrac{2h^2 + 3r^2}{4h^2 + 3r^2}

The lateral surface area S = 3 2 r 4 h 2 + 3 r 2 S = \dfrac{3}{2}r\sqrt{4h^2 + 3r^2}

The volume V = 1 4 3 r 2 h = k h = 4 3 k r 2 V = \dfrac{1}{4\sqrt{3}}r^2h = k \implies h = \dfrac{4\sqrt{3}k}{r^2} \implies S ( r ) = 3 2 r 192 k 2 + 3 r 6 S(r) = \dfrac{3}{2r}\sqrt{192k^2 + 3r^6} \implies

d S d r = 9 ( r 6 32 k 2 ) r 2 192 k 2 + 3 r 6 = 0 r = ( 4 2 k ) 1 3 \dfrac{dS}{dr} = \dfrac{9(r^6 - 32k^2)}{r^2\sqrt{192k^2 + 3r^6}} = 0 \implies r = (4\sqrt{2}k)^{\frac{1}{3}} \implies h = 4 3 k ( 4 2 ) 2 3 h = \dfrac{4\sqrt{3}k}{(4\sqrt{2})^{\frac{2}{3}}}

cos ( λ ) = 2 3 λ 131.81031 \implies \cos(\lambda) = -\dfrac{2}{3} \implies \lambda \approx \boxed{131.81031} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...