Hexed Hex

Geometry Level 4

An equilateral hexagon, that is one with all sides equal to one another, has B C D = 12 2 , D E F = 13 8 , F A B = 10 0 . \angle BCD=122^\circ,\ \angle DEF=138^\circ,\ \angle FAB=100^\circ. Find C D E \angle CDE in degrees.



Inspiration : Calvin Lin's Problems of the Week, March 20


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Maria Kozlowska
Mar 22, 2017

A + C + E = 360 \angle A + \angle C + \angle E = 360 . Therefore point A reflected about BF will produce point O, circumcenter of B D F \triangle BDF . Same point O O will be produced by reflection of point C about BD and point E about DF.

By inscribed angle theorem F D B = 100 / 2 = 50 \angle FDB = 100/2=50 .

F D E = ( 180 138 ) / 2 = 21 \angle FDE = (180-138)/2=21

B D C = ( 180 122 ) / 2 = 29 \angle BDC = (180-122)/2=29

C D E = F D B + F D E + B D C = 50 + 21 + 29 = 100 \angle CDE= \angle FDB+\angle FDE+ \angle BDC= 50 + 21+29= \boxed{100}

Another way to solve it is to look at the hexagon as three adjacent rhombuses: ABOF, BCDO, DEFO. O D E = 180 138 = 42 \angle ODE = 180-138=42 , O D C = 180 122 = 58 E D C = 42 + 58 = 100 \angle ODC = 180-122=58 \Rightarrow \angle EDC = 42+58= \boxed{100} .

Oh that's amazing!

Can you add more clarity to the first line? Why must that be the case? I agree that if we take circumcenter O of triangle BDF and reflect about the sides, we will get an equilateral hexagon. Why does the angles summing up to 360 give us this particular hexagon?

Calvin Lin Staff - 4 years, 2 months ago

Log in to reply

I expanded the solution.

Maria Kozlowska - 4 years, 2 months ago

By Law of Cosines

a 2 = 2 y 2 2 y 2 c o s 100 = y 2 ( 2 2 c o s 100 ) a^2 = 2y^2 - 2y^2cos100 = y^2(2 - 2cos100)

a = y 2 2 c o s 100 a = y\sqrt{2 - 2cos100}

b 2 = y 2 ( 2 2 c o s 138 b^2 = y^2(2 - 2cos138

b = y 2 2 c o s 138 b = y\sqrt{2 - 2cos138}

c 2 = y 2 ( 2 2 c o s 122 ) c^2 = y^2(2 - 2cos122)

c = y 2 2 c o s 122 c = y\sqrt{2 - 2cos122}

Solving for m m ,

y 2 = y 2 + b 2 2 ( y ) ( b ) c o s m y^2 = y^2 + b^2 - 2(y)(b)cosm

m = 21 m = 21

Solving for k k ,

y 2 = y 2 + c 2 2 ( y ) ( c ) c o s k y^2 = y^2 + c^2 - 2(y)(c)cosk

k = 29 k = 29

Solving for z z ,

a 2 = b 2 + c 2 2 ( b ) ( c ) c o s z a^2 = b^2 + c^2 - 2(b)(c)cosz

z = 50 z = 50

C D E = 21 + 29 + 50 = 100 \angle CDE = 21 + 29 + 50 = 100

Marta Reece
Mar 21, 2017

Angle x = E D F + F D B + B D C x=\angle EDF+\angle FDB+\angle BDC .

Angle E D F = 1 2 ( 18 0 13 8 ) = 2 1 EDF=\frac{1}{2}(180^\circ-138^\circ)=21^\circ from the isosceles triangle E D F EDF .

Angle B D C = 1 2 ( 18 0 12 2 ) = 2 9 BDC=\frac{1}{2}(180^\circ-122^\circ)=29^\circ from the isosceles triangle B D C BDC .

To get angle F D B FDB we will use the triangle F D B FDB , after we find its sides a , b a, b and c c using the law of cosines and the arbitrary assumption that every side of the hexagon is size 1.

a = 2 2 c o s ( 100 ) = 1.532 a=\sqrt{2-2cos(100)}=1.532

b = 2 2 c o s ( 122 ) = 1.749 b=\sqrt{2-2cos(122)}=1.749

c = 2 2 c o s ( 138 ) = 1.867 c=\sqrt{2-2cos(138)}=1.867

One more use of the law of cosines, this time in reverse, will give us

F D B = a r c c o s ( b 2 + c 2 a 2 2 b c ) = 5 0 \angle FDB=arccos(\frac{b^2+c^2-a^2}{2bc})=50^\circ

x = E D F + F D B + B D C = 2 1 + 5 0 + 2 9 = 10 0 x=\angle EDF+\angle FDB+\angle BDC=21^\circ+50^\circ+29^\circ=100^\circ

I had done the same way but found a, b, c as under, but pressed wrong button !!! A s s u m i n g a l l s i d e s a s u n i t y , W L O G , a = 2 1 S i n 100 2 = 1.532..... b = 2 1 S i n 122 2 = 1.749.... c = 2 1 S i n 138 2 = 1.867. F D B = C o s 1 ( b 2 + c 2 a 2 2 b c ) = 5 0 o . S o x = 180 138 2 + 50 + 180 122 2 = 10 0 o . Assuming~ all~ sides ~as~ unity, WLOG, a=2 * 1 * Sin\frac {100} 2=1.532..... b=2 * 1 * Sin\frac{122} 2=1.749....c=2 * 1 * Sin\frac{138} 2=1.867. \\ \angle FDB=Cos^{-1}(\dfrac{b^2+c^2-a^2}{2*b*c})=50^o. \\ So~x=\dfrac{180-138} 2+50+\dfrac{180-122 } 2=100^o. \\

Niranjan Khanderia - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...