Hey 2021 !!

Algebra Level 2

1 a 1 + 1 a 2 + + 1 a 2021 \frac{1}{a_1}+ \frac{1}{a_2}+\dots + \frac{1}{a_{2021}}

If a 1 , a 2 , a 2021 a_1,a_2\dots,a_{2021} are positive real numbers such that a 1 + a 2 + + a 2021 = 2021 a_1+a_2+\dots+a_{2021}=2021 , then find the minimum value of the expression above.


The answer is 2021.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

According to AM-HM ,

2021 a 1 + a 2 + + a 2021 1 a 1 + 1 a 2 + + 1 a 2021 2021 \frac{2021}{a_1+a_2+\dots+a_{2021}}\leq\frac{\frac{1}{a_1}+ \frac{1}{a_2}+\dots + \frac{1}{a_{2021}} }{2021} ,

So,

1 a 1 + 1 a 2 + + 1 a 2021 2021. \frac{1}{a_1}+ \frac{1}{a_2}+\dots + \frac{1}{a_{2021}} \geq2021.

Tom Engelsman
Dec 25, 2020

Let's try Lagrange Multipliers here. Let f ( a 1 , . . . , a 2021 ) = Σ k = 1 2021 1 a k f(a_{1},...,a_{2021}) = \Sigma_{k=1}^{2021} \frac{1}{a_{k}} and g ( a 1 , . . . , a 2021 ) = Σ k = 1 2021 a k = 2021. g(a_{1},...,a_{2021}) = \Sigma_{k=1}^{2021} a_{k} = 2021. Taking f = λ g \nabla f = \lambda \cdot \nabla g , we obtain the following:

1 a 1 2 = 1 a 2 2 = . . . = 1 a 2021 2 = λ a 1 = a 2 = . . . = a 2021 . -\frac{1}{a^{2}_{1}} = -\frac{1}{a^{2}_{2}} = ... = -\frac{1}{a^{2}_{2021}} = \lambda \Rightarrow a_{1} = a_{2} = ... = a_{2021}.

which after substituting into g g yields:

Σ k = 1 2021 a 1 = 2021 2021 a 1 = 2021 a 1 = 1 \Sigma_{k=1}^{2021} a_{1} = 2021 \Rightarrow 2021a_{1} = 2021 \Rightarrow a_{1} = 1 .

Taking the Hessian matrix of f f :

F ( a 1 , . . . , a 2021 ) = [ 2 / a 1 3 0 0 0 2 / a 2 3 0 0 0 2 / a 2021 3 ] F(a_{1}, ... , a_{2021}) = \begin{bmatrix} 2/a^{3}_{1} & 0 & \dots & 0 \\ 0 & 2/a^{3}_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 2/a^{3}_{2021} \end{bmatrix}

at the critical point ( a 1 , . . . , a 2021 ) = ( 1 , . . . , 1 ) (a_{1}, ... , a_{2021}) = (1, ..., 1) produces F ( 1 , . . . , 1 ) = 2 I 2021 x 2021 > 0 F(1, ... , 1) = 2 \cdot I_{2021 x 2021} > 0 , which is positive-definite and hence a global minimum. The minimum value for f f computes to 2021 1 = 2021 . 2021 \cdot 1 = \boxed{2021}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...