Hi! I'm back

Algebra Level 5

{ a + b + c + d + e = 8 a 2 + b 2 + c 2 + d 2 + e 2 = 16 \large \begin{cases} a+b+c+d+e=8 \\ a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=16 \end{cases}

If a a , b b , c c , d d , and e e are real numbers, find the maximum value of a a .


The answer is 3.200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Miles Koumouris
Dec 19, 2017

By Cauchy-Schwarz, 4 ( b 2 + c 2 + d 2 + e 2 ) ( b + c + d + e ) 2 4 ( 16 a 2 ) ( 8 a ) 2 a ( 5 a 16 ) 0 , \begin{aligned} 4(b^2+c^2+d^2+e^2)&\geq (b+c+d+e)^2\\ 4(16-a^2)&\geq (8-a)^2\\ a(5a-16)&\leq 0, \end{aligned} and thus 0 a 16 5 . 0\leq a\leq \dfrac{16}{5}. Such a maximum can be achieved when b = c = d = e = 6 5 b=c=d=e=\tfrac 65 .

Hence, the largest possible value of a a is 16 5 = 3.2 \tfrac{16}{5}=\boxed{3.2} .

Given that a 2 + b 2 + c 2 + d 2 + e 2 = 16 a^2+b^2+c^2+d^2+e^2 = 16 , a a is maximum, when a 2 a^2 is also maximum or b 2 + c 2 + d 2 + e 2 b^2+c^2+d^2+e^2 is minimum. By Titu's lemma , we have b 2 1 + c 2 1 + d 2 1 + e 2 1 ( b + c + d + e ) 2 4 \dfrac {b^2}1+\dfrac {c^2}1+\dfrac {d^2}1+\dfrac {e^2}1 \le \dfrac {(b+c+d+e)^2}4 . Since equality occurs when b = c = d = e b=c=d=e , the system of equations becomes.

{ a + b + c + d + e = a + 4 b = 8 . . . ( 1 ) a 2 + b 2 + c 2 + d 2 + e 2 = a 2 + 4 b 2 = 16 . . . ( 2 ) \begin{cases} a+b+c+d+e = a+4b = 8 & ...(1) \\ a^2+b^2+c^2+d^2+e^2 = a^2 + 4b^2 = 16 & ...(2) \end{cases}

( 2 ) : a 2 + 4 b 2 = 16 From ( 1 ) : a = 8 4 b 64 64 b + 16 b 2 + 4 b 2 = 16 5 b 2 16 b + 12 = 0 ( 5 b 6 ) ( b 2 ) = 0 b = 6 5 for minimum b 2 + c 2 + d 2 + e 2 = 4 b 2 \begin{aligned} (2): \qquad \qquad {\color{#3D99F6} a^2} + 4b^2 & = 16 & \small \color{#3D99F6} \text{From }(1): \ a = 8 - 4b \\ {\color{#3D99F6} 64-64b + 16b^2} + 4b^2 & = 16 \\ 5b^2 - 16b + 12 & = 0 \\ (5b-6)(b-2) & = 0 \\ \implies b & = \frac 65 & \small \color{#3D99F6} \text{for minimum }b^2+c^2+d^2+e^2=4b^2 \end{aligned}

Therefore, max ( a ) = 8 4 min ( b ) = 8 4 × 6 5 = 16 5 = 3.2 \max(a) = 8 - 4\min(b) = 8 - 4 \times \dfrac 65 = \dfrac {16}5 = \boxed{3.2} .

Note that there is no solution if any, some or all of b b , c c , d d , and e e are 0 \le 0 .

[Not complete solution]

Q M A M QM-AM b 2 + c 2 + d 2 + e 2 4 b + c + d + e 4 \sqrt{\frac{b^{2}+c^{2}+d^{2}+e^{2}}{4}} \geq \frac{b+c+d+e}{4} then substitute a a and we done.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...