Hidden Harmonies

Algebra Level 2

1 1 × 2 + 1 2 × 3 + 1 3 × 4 + . . . + 1 2016 × 2017 + 1 2017 × 2018 = x \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2016\times2017}+\dfrac{1}{2017\times2018}=x

What is x x ?

You don't need to use sigma, though you can.

Other \text{Other} 2017 2018 \dfrac{2017}{2018} 2017 2017 2016 2017 \dfrac{2016}{2017}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Terry Yu
Jun 14, 2017

If you noticed,

1 1 × 2 = 1 1 1 2 \dfrac{1}{1\times2}=\dfrac{1}{1}-\dfrac{1}{2}

1 2 × 3 = 1 2 1 3 \dfrac{1}{2\times3}=\dfrac{1}{2}-\dfrac{1}{3}

and so on and so forth until you get the equation

1 1 1 2 + 1 2 1 3 + 1 3 . . . 1 2017 + 1 2017 1 2018 \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}...-\dfrac{1}{2017}+\dfrac{1}{2017}-\dfrac{1}{2018}

which can simplify to

1 1 1 2 + 1 2 1 3 + 1 3 . . . 1 2017 + 1 2017 1 2018 = 1 1 2018 = 2017 2018 \dfrac{1}{1}- \xcancel{\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}...-\dfrac{1}{2017}+\dfrac{1}{2017}}-\dfrac{1}{2018}=1-\dfrac{1}{2018}=\color{#D61F06}\large\boxed{\dfrac{2017}{2018}}

We can generalize this as the sum k = 1 n ( 1 n 1 n + 1 ) \displaystyle \sum_{k \ = \ 1}^{n} \Bigg(\frac{1}{n} - \frac{1}{n + 1}\Bigg) , where 1 n ( n + 1 ) = 1 n 1 n + 1 \displaystyle \frac{1}{n(n + 1)} = \frac{1}{n} - \frac{1}{n + 1} through partial fraction decomposition. A series where terms cancel as you showed is called a telescoping series .

Zach Abueg - 3 years, 12 months ago
Chew-Seong Cheong
Jun 20, 2017

x = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + + 1 2016 × 2017 + 1 2017 × 2018 = 1 1 1 2 + 1 2 1 3 + 1 3 1 4 + + 1 2016 1 2017 + 1 2017 1 2018 = 1 1 1 2 + 1 2 1 3 + 1 3 1 4 + 1 4 + 1 2017 + 1 2017 1 2018 = 1 1 2018 = 2017 2018 \begin{aligned} x & = {\color{#3D99F6} \frac 1{1\times 2}} +{\color{#D61F06} \frac 1{2\times 3}} + {\color{#3D99F6} \frac 1{3\times 4}} + \cdots + {\color{#3D99F6} \frac 1{2016\times 2017}} +{\color{#D61F06} \frac 1{2017\times 2018}} \\ & = {\color{#3D99F6} \frac 11 - \frac 12} +{\color{#D61F06} \frac 12 - \frac 13} + {\color{#3D99F6} \frac 13 - \frac 14} + \cdots + {\color{#3D99F6} \frac 1{2016} - \frac 1{2017}} +{\color{#D61F06} \frac 1{2017} - \frac 1{2018}} \\ & = \frac 11 \cancel{- \frac 12 + \frac 12} \cancel{- \frac 13 + \frac 13} \cancel{- \frac 14 + \frac 14}+ \cdots \cancel{- \frac 1{2017} + \frac 1{2017}} - \frac 1{2018} \\ & = 1 - \frac 1{2018} \\ & = \boxed{\dfrac {2017}{2018}} \end{aligned}

Hana Wehbi
Jun 15, 2017

x = 1 2017 1 n ( n + 1 ) = 1 2017 ( 1 n 1 n + 1 ) = 1 1 2018 = 2017 2018 x= \sum_1^{2017 }\frac{1}{n(n+1)} = \sum_1^{2017}(\frac{1}{n} - \frac{1}{n+1} ) = 1-\frac{1}{2018}= \frac{2017}{2018} , keeping in mind that many elements will be canceled.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...