Let be a matrix defined by where in which for all values of ; and . Find the largest values for , such that divides the determinant , where represents the determinant of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We solve the recurrence relation for the coefficients of the matrix A to write α ( u , v ) = ( c + v − u ) ! ( c + v − 1 ) ! 1 ≤ u , v ≤ c and hence we deduce that α ( u , v + 1 ) − α ( u , v ) = { ( u − 1 ) α ( u − 1 , v ) 0 2 ≤ u ≤ c , 1 ≤ v ≤ c − 1 u = 1 , 1 ≤ v ≤ c − 1 For each 1 ≤ K ≤ c , let M ( K ) be the K × K matrix whose coefficients are α ( u , v ) for 1 ≤ u , v ≤ K . We have shown above that, if we apply suitable column operations to the matrix, that d e t M ( K ) = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1 α ( 2 , 1 ) α ( 3 , 1 ) α ( 4 , 1 ) ⋮ α ( K , 1 ) 0 α ( 1 , 1 ) 2 α ( 2 , 1 ) 3 α ( 3 , 1 ) ⋮ ( K − 1 ) α ( K − 1 , 1 ) 0 α ( 1 , 2 ) 2 α ( 2 , 2 ) 3 α ( 3 , 2 ) ⋮ ( K − 2 ) α ( K − 1 , 2 ) ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ 0 α ( 1 , K − 1 ) 2 α ( 2 , K − 1 ) 3 α ( 3 , K − 1 ) ⋮ ( K − 1 ) α ( K − 1 , K − 1 ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ α ( 1 , 1 ) 2 α ( 2 , 1 ) 3 α ( 3 , 1 ) ⋮ ( K − 1 ) α ( K − 1 , 1 ) α ( 1 , 2 ) 2 α ( 2 , 2 ) 3 α ( 3 , 2 ) ⋮ ( K − 2 ) α ( K − 1 , 2 ) ⋯ ⋯ ⋯ ⋱ ⋯ α ( 1 , K − 1 ) 2 α ( 2 , K − 1 ) 3 α ( 3 , K − 1 ) ⋮ ( K − 1 ) α ( K − 1 , K − 1 ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ( K − 1 ) ! d e t M ( K − 1 ) and hence d e t M ( K ) = j = 1 ∏ K − 1 j ! so that d = ∣ A ∣ = j = 1 ∏ 2 0 1 6 j ! Thus 2 0 1 6 ! certainly divides d , but the prime 2 0 1 7 does not divide d , so that 2 0 1 7 ! does not divide d . Thus the answer is 2 0 1 6 .