High-order derivative identity

Calculus Level 5

If f ( x ) = sin x x ( x > 0 ) f(x)=\dfrac{\sin\ x}{x}\ (x>0) , where f ( n ) ( x ) f^{(n)}(x) is the n n th derivative of f ( x ) f(x) , then for all positive integer n n , the expression n f ( n 1 ) ( π 4 ) + π 4 f ( n ) ( π 4 ) \left|nf^{(n-1)}\left(\dfrac{\pi}{4}\right)+\dfrac{\pi}{4}f^{(n)}\left(\dfrac{\pi}{4}\right)\right| is always equal to A A .

Submit 10000 A \lfloor 10000A \rfloor and show your religious proof.


The answer is 7071.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alice Smith
Sep 28, 2019

Official Solution :

Of course, you could prove it by induction, but such proof would be limited and not elegant. I will prove it directly:

We know that we can solve the high-order derivative by using Leibniz's formula, which is a calculus analog of the binomial theorem:

( g ( x ) h ( x ) ) ( n ) = k = 0 n ( n k ) g ( n k ) ( x ) h ( k ) ( x ) \displaystyle (g(x)h(x))^{(n)}= \sum_{k=0}^{n} {n \choose k}g^{(n-k)}(x)h^{(k)}(x)

Let g ( 0 ) ( x ) = sin x g^{(0)}(x)=\sin x and h ( 0 ) ( x ) = 1 x h^{(0)}(x)=\dfrac{1}{x} .

Notice that h ( 0 ) ( x ) = x 1 , h ( 1 ) ( x ) = ( 1 ) x 2 , h ( 2 ) ( x ) = ( 1 ) ( 2 ) x 3 , h ( 3 ) ( x ) = ( 1 ) ( 2 ) ( 3 ) x 4 , . . . \displaystyle h^{(0)}(x)=x^{-1},\ h^{(1)}(x)=(-1)x^{-2},\ h^{(2)}(x)=(-1)(-2)x^{-3},\ h^{(3)}(x)=(-1)(-2)(-3)x^{-4},...

So that h ( n ) ( x ) = ( 1 ) n n ! x n 1 \displaystyle h^{(n)}(x)=(-1)^n n! x^{-n-1}

n f ( n 1 ) ( x ) = n ( n 1 0 ) g ( n 1 ) ( x ) h ( 0 ) ( x ) + n ( n 1 1 ) g ( n 2 ) ( x ) h ( 1 ) ( x ) + n ( n 1 2 ) g ( n 3 ) ( x ) h ( 2 ) ( x ) + . . . . . . + n ( n 1 n 1 ) g ( 0 ) ( x ) h ( n 1 ) ( x ) = n ( n 1 ) ! 0 ! ( n 1 ) ! g ( n 1 ) ( x ) ( 1 ) 0 0 ! x 1 + n ( n 1 ) ! 1 ! ( n 2 ) ! g ( n 2 ) ( x ) ( 1 ) 1 1 ! x 2 + n ( n 1 ) ! 2 ! ( n 3 ) ! g ( n 3 ) ( x ) ( 1 ) 2 2 ! x 3 + . . . . . . + n ( n 1 ) ! ( n 1 ) ! 0 ! g 0 ( x ) ( 1 ) n 1 ( n 1 ) ! x n = n ! ( n 1 ) ! g ( n 1 ) ( x ) ( 1 ) 0 x 1 + n ! ( n 2 ) ! g ( n 2 ) ( x ) ( 1 ) 1 x 2 + n ! ( n 3 ) ! g ( n 3 ) ( x ) ( 1 ) 2 x 3 + . . . . . . + n ! 0 ! g 0 ( x ) ( 1 ) n 1 x n \displaystyle nf^{(n-1)}(x)=n {n-1 \choose 0}g^{(n-1)}(x)h^{(0)}(x) + n {n-1 \choose 1}g^{(n-2)}(x)h^{(1)}(x)+n {n-1 \choose 2}g^{(n-3)}(x)h^{(2)}(x)+......+n {n-1 \choose n-1}g^{(0)}(x)h^{(n-1)}(x) \\ =n\dfrac{(n-1)!}{0!(n-1)!}g^{(n-1)}(x)(-1)^{0}0!x^{-1}+n\dfrac{(n-1)!}{1!(n-2)!}g^{(n-2)}(x)(-1)^{1}1!x^{-2}+n\dfrac{(n-1)!}{2!(n-3)!}g^{(n-3)}(x)(-1)^{2}2!x^{-3}+...... \\+n\dfrac{(n-1)!}{(n-1)!0!}g^{0}(x)(-1)^{n-1}(n-1)!x^{-n} \\ =\boxed {\dfrac{n!}{(n-1)!}g^{(n-1)}(x)(-1)^{0}x^{-1}+\dfrac{n!}{(n-2)!}g^{(n-2)}(x)(-1)^{1}x^{-2}+\dfrac{n!}{(n-3)!}g^{(n-3)}(x)(-1)^{2}x^{-3}+......+\dfrac{n!}{0!}g^{0}(x)(-1)^{n-1}x^{-n}}

x f ( n ) ( x ) = x ( n 0 ) g ( n ) ( x ) h ( 0 ) ( x ) + x ( n 1 ) g ( n 1 ) ( x ) h ( 1 ) ( x ) + x ( n 2 ) g ( n 2 ) ( x ) h ( 2 ) ( x ) + . . . . . . + x ( n n ) g ( 0 ) ( x ) h ( n ) ( x ) = x n ! 0 ! n ! g ( n ) ( x ) ( 1 ) 0 0 ! x 1 + x n ! 1 ! ( n 1 ) ! g ( n 1 ) ( x ) ( 1 ) 1 1 ! x 2 + x n ! 2 ! ( n 2 ) ! g ( n 2 ) ( x ) ( 1 ) 2 2 ! x 3 + . . . . . . + x n ! n ! 0 ! g 0 ( x ) ( 1 ) n ( n ) ! x n 1 = n ! 0 ! n ! g ( n ) ( x ) ( 1 ) 0 0 ! x 0 + n ! 1 ! ( n 1 ) ! g ( n 1 ) ( x ) ( 1 ) 1 1 ! x 1 + n ! 2 ! ( n 2 ) ! g ( n 2 ) ( x ) ( 1 ) 2 2 ! x 2 + . . . . . . + n ! n ! 0 ! g 0 ( x ) ( 1 ) n n ! x n = n ! n ! g ( n ) ( x ) ( 1 ) 0 x 0 + n ! ( n 1 ) ! g ( n 1 ) ( x ) ( 1 ) 1 x 1 + n ! ( n 2 ) ! g ( n 2 ) ( x ) ( 1 ) 2 x 2 + . . . . . . + n ! 0 ! g 0 ( x ) ( 1 ) n x n \displaystyle xf^{(n)}(x)=x {n \choose 0}g^{(n)}(x)h^{(0)}(x) + x {n \choose 1}g^{(n-1)}(x)h^{(1)}(x)+x {n \choose 2}g^{(n-2)}(x)h^{(2)}(x)+......+x {n \choose n}g^{(0)}(x)h^{(n)}(x) \\ =x\dfrac{n!}{0!n!}g^{(n)}(x)(-1)^{0}0!x^{-1}+x\dfrac{n!}{1!(n-1)!}g^{(n-1)}(x)(-1)^{1}1!x^{-2}+x\dfrac{n!}{2!(n-2)!}g^{(n-2)}(x)(-1)^{2}2!x^{-3}+......+x\dfrac{n!}{n!0!}g^{0}(x)(-1)^{n}(n)!x^{-n-1} \\ =\dfrac{n!}{0!n!}g^{(n)}(x)(-1)^{0}0!x^{0}+\dfrac{n!}{1!(n-1)!}g^{(n-1)}(x)(-1)^{1}1!x^{-1}+\dfrac{n!}{2!(n-2)!}g^{(n-2)}(x)(-1)^{2}2!x^{-2}+......+\dfrac{n!}{n!0!}g^{0}(x)(-1)^{n}n!x^{-n} \\ =\boxed{\dfrac{n!}{n!}g^{(n)}(x)(-1)^{0}x^{0}+\dfrac{n!}{(n-1)!}g^{(n-1)}(x)(-1)^{1}x^{-1}+\dfrac{n!}{(n-2)!}g^{(n-2)}(x)(-1)^{2}x^{-2}+......+\dfrac{n!}{0!}g^{0}(x)(-1)^{n}x^{-n}}

Notice that x f ( n ) ( x ) xf^{(n)}(x) has n + 1 n+1 terms and n f ( n 1 ) ( x ) nf^{(n-1)}(x) has n n terms. From the second term of x f ( n ) ( x ) xf^{(n)}(x) , when added up together, the terms cancel with each other since the negative sign alternates, left with the first term of x f ( n ) ( x ) xf^{(n)}(x) , which simplifies to g ( n ) ( x ) g^{(n)}(x) .

So n f ( n 1 ) ( x ) + x f ( n ) ( x ) = g ( n ) ( x ) |nf^{(n-1)}(x) + xf^{(n)}(x)|=|g^{(n)}(x)| .

Since g ( 0 ) ( x ) = sin x , g ( 1 ) ( x ) = cos x , g ( 2 ) ( x ) = sin x , g ( 3 ) ( x ) = cos x , g ( 4 ) ( x ) = sin x g^{(0)}(x)=\sin x,\ g^{(1)}(x)=\cos x,\ g^{(2)}(x)=-\sin x,\ g^{(3)}(x)=-\cos x,\ g^{(4)}(x)=\sin x , whose derivative has a period of 4, when x = π 4 x=\dfrac{\pi}{4} , g ( n ) ( π 4 ) = 2 2 |g^{(n)}(\dfrac{\pi}{4})|=\dfrac{\sqrt{2}}{2} .

We get n f ( n 1 ) ( π 4 ) + x f ( n ) ( π 4 ) = g ( n ) ( π 4 ) = 2 2 = A |nf^{(n-1)}(\dfrac{\pi}{4}) + xf^{(n)}(\dfrac{\pi}{4})|=|g^{(n)}(\dfrac{\pi}{4})|=\dfrac{\sqrt{2}}{2}=A .

The answer is 10000 A = 7071 \lfloor 10000A \rfloor=\boxed {7071} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...