If , where is the th derivative of , then for all positive integer , the expression is always equal to .
Submit and show your religious proof.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Official Solution :
Of course, you could prove it by induction, but such proof would be limited and not elegant. I will prove it directly:
We know that we can solve the high-order derivative by using Leibniz's formula, which is a calculus analog of the binomial theorem:
( g ( x ) h ( x ) ) ( n ) = k = 0 ∑ n ( k n ) g ( n − k ) ( x ) h ( k ) ( x )
Let g ( 0 ) ( x ) = sin x and h ( 0 ) ( x ) = x 1 .
Notice that h ( 0 ) ( x ) = x − 1 , h ( 1 ) ( x ) = ( − 1 ) x − 2 , h ( 2 ) ( x ) = ( − 1 ) ( − 2 ) x − 3 , h ( 3 ) ( x ) = ( − 1 ) ( − 2 ) ( − 3 ) x − 4 , . . .
So that h ( n ) ( x ) = ( − 1 ) n n ! x − n − 1
n f ( n − 1 ) ( x ) = n ( 0 n − 1 ) g ( n − 1 ) ( x ) h ( 0 ) ( x ) + n ( 1 n − 1 ) g ( n − 2 ) ( x ) h ( 1 ) ( x ) + n ( 2 n − 1 ) g ( n − 3 ) ( x ) h ( 2 ) ( x ) + . . . . . . + n ( n − 1 n − 1 ) g ( 0 ) ( x ) h ( n − 1 ) ( x ) = n 0 ! ( n − 1 ) ! ( n − 1 ) ! g ( n − 1 ) ( x ) ( − 1 ) 0 0 ! x − 1 + n 1 ! ( n − 2 ) ! ( n − 1 ) ! g ( n − 2 ) ( x ) ( − 1 ) 1 1 ! x − 2 + n 2 ! ( n − 3 ) ! ( n − 1 ) ! g ( n − 3 ) ( x ) ( − 1 ) 2 2 ! x − 3 + . . . . . . + n ( n − 1 ) ! 0 ! ( n − 1 ) ! g 0 ( x ) ( − 1 ) n − 1 ( n − 1 ) ! x − n = ( n − 1 ) ! n ! g ( n − 1 ) ( x ) ( − 1 ) 0 x − 1 + ( n − 2 ) ! n ! g ( n − 2 ) ( x ) ( − 1 ) 1 x − 2 + ( n − 3 ) ! n ! g ( n − 3 ) ( x ) ( − 1 ) 2 x − 3 + . . . . . . + 0 ! n ! g 0 ( x ) ( − 1 ) n − 1 x − n
x f ( n ) ( x ) = x ( 0 n ) g ( n ) ( x ) h ( 0 ) ( x ) + x ( 1 n ) g ( n − 1 ) ( x ) h ( 1 ) ( x ) + x ( 2 n ) g ( n − 2 ) ( x ) h ( 2 ) ( x ) + . . . . . . + x ( n n ) g ( 0 ) ( x ) h ( n ) ( x ) = x 0 ! n ! n ! g ( n ) ( x ) ( − 1 ) 0 0 ! x − 1 + x 1 ! ( n − 1 ) ! n ! g ( n − 1 ) ( x ) ( − 1 ) 1 1 ! x − 2 + x 2 ! ( n − 2 ) ! n ! g ( n − 2 ) ( x ) ( − 1 ) 2 2 ! x − 3 + . . . . . . + x n ! 0 ! n ! g 0 ( x ) ( − 1 ) n ( n ) ! x − n − 1 = 0 ! n ! n ! g ( n ) ( x ) ( − 1 ) 0 0 ! x 0 + 1 ! ( n − 1 ) ! n ! g ( n − 1 ) ( x ) ( − 1 ) 1 1 ! x − 1 + 2 ! ( n − 2 ) ! n ! g ( n − 2 ) ( x ) ( − 1 ) 2 2 ! x − 2 + . . . . . . + n ! 0 ! n ! g 0 ( x ) ( − 1 ) n n ! x − n = n ! n ! g ( n ) ( x ) ( − 1 ) 0 x 0 + ( n − 1 ) ! n ! g ( n − 1 ) ( x ) ( − 1 ) 1 x − 1 + ( n − 2 ) ! n ! g ( n − 2 ) ( x ) ( − 1 ) 2 x − 2 + . . . . . . + 0 ! n ! g 0 ( x ) ( − 1 ) n x − n
Notice that x f ( n ) ( x ) has n + 1 terms and n f ( n − 1 ) ( x ) has n terms. From the second term of x f ( n ) ( x ) , when added up together, the terms cancel with each other since the negative sign alternates, left with the first term of x f ( n ) ( x ) , which simplifies to g ( n ) ( x ) .
So ∣ n f ( n − 1 ) ( x ) + x f ( n ) ( x ) ∣ = ∣ g ( n ) ( x ) ∣ .
Since g ( 0 ) ( x ) = sin x , g ( 1 ) ( x ) = cos x , g ( 2 ) ( x ) = − sin x , g ( 3 ) ( x ) = − cos x , g ( 4 ) ( x ) = sin x , whose derivative has a period of 4, when x = 4 π , ∣ g ( n ) ( 4 π ) ∣ = 2 2 .
We get ∣ n f ( n − 1 ) ( 4 π ) + x f ( n ) ( 4 π ) ∣ = ∣ g ( n ) ( 4 π ) ∣ = 2 2 = A .
The answer is ⌊ 1 0 0 0 0 A ⌋ = 7 0 7 1 .