High Phower

Level pending

If ( x + 1 ) ( x 1 ) = x (x+1)(x-1)=x , evaluate x 10 + x 10 x^{10}+x^{-10} .


The answer is 123.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Dec 20, 2013

x 2 1 = x x 1 x = 1 ( x 1 x ) 5 = 1 ( x 5 1 x 5 ) 5 ( x 3 1 x 3 ) + 10 ( x 1 x ) = 1 ( x 5 1 x 5 ) 5 ( ( x 1 x ) 3 3 ( x 1 x ) ) + 10 ( 1 ) = 1 ( x 5 1 x 5 ) 5 ( 1 3 + 3 ( 1 ) ) + 10 ( 1 ) = 1 x 5 1 x 5 = 11 ( x 5 1 x 5 ) 2 = 1 1 2 ( x 10 + 1 x 10 ) 2 = 121 x 10 + 1 x 10 = 123 \begin{aligned} x^2 - 1 & = & x \\ x - \frac {1}{x} & = & 1 \\ \left ( x - \frac {1}{x} \right )^5 & = & 1 \\ \left ( x^5 - \frac {1}{x^5} \right ) - 5 \left ( x^3 - \frac {1}{x^3} \right ) + 10 \left ( x - \frac {1}{x} \right ) & = & 1 \\ \left ( x^5 - \frac {1}{x^5} \right ) - 5 \left ( \left (x - \frac {1}{x} \right )^3 - 3 \left (x - \frac {1}{x} \right ) \right ) + 10 (1) & = & 1 \\ \left ( x^5 - \frac {1}{x^5} \right ) - 5 \left ( 1^3 + 3(1) \right ) + 10 (1) & = & 1 \\ x^5 - \frac {1}{x^5} & = & 11 \\ \left ( x^5 - \frac {1}{x^5} \right )^2 & = & 11^2 \\ \left ( x^{10} + \frac {1}{x^{10}} \right ) - 2 & = & 121 \\ x^{10} + \frac {1}{x^{10}} & = & \boxed{123} \\ \end{aligned}

here's the solution: first observe:

if x + 1 x = p x+\frac{1}{x}=p then the desired expression is equal to :

( ( ( p 2 2 ) 2 2 ) ( p ) ( ( p ) 3 3 p ) ) 2 2 (((p^2-2)^2-2)(p)-((p)^3-3p))^2-2 .Observe

( x 1 x ) 2 + 2 = ( x + 1 x ) 2 2 (x-\frac{1}{x})^2+2=(x+\frac{1}{x})^2-2

since ( x + 1 ) ( x 1 ) = x (x+1)(x-1)=x it follows that x 1 x = 1 x-\frac{1}{x}=1 . where we obtain x + 1 x = 5 x+\frac{1}{x}=\sqrt{5} substituting this value for p p we obtain :

x 10 + 1 x 10 = 123 x^{10}+\frac{1}{x^{10}}=\boxed{123}

Lorenc Bushi - 7 years, 5 months ago

Genious! Bravo, bravo!

Guilherme Dela Corte - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...