If ( x + 1 ) ( x − 1 ) = x , evaluate x 1 0 + x − 1 0 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
here's the solution: first observe:
if x + x 1 = p then the desired expression is equal to :
( ( ( p 2 − 2 ) 2 − 2 ) ( p ) − ( ( p ) 3 − 3 p ) ) 2 − 2 .Observe
( x − x 1 ) 2 + 2 = ( x + x 1 ) 2 − 2
since ( x + 1 ) ( x − 1 ) = x it follows that x − x 1 = 1 . where we obtain x + x 1 = 5 substituting this value for p we obtain :
x 1 0 + x 1 0 1 = 1 2 3
Genious! Bravo, bravo!
Problem Loading...
Note Loading...
Set Loading...
x 2 − 1 x − x 1 ( x − x 1 ) 5 ( x 5 − x 5 1 ) − 5 ( x 3 − x 3 1 ) + 1 0 ( x − x 1 ) ( x 5 − x 5 1 ) − 5 ( ( x − x 1 ) 3 − 3 ( x − x 1 ) ) + 1 0 ( 1 ) ( x 5 − x 5 1 ) − 5 ( 1 3 + 3 ( 1 ) ) + 1 0 ( 1 ) x 5 − x 5 1 ( x 5 − x 5 1 ) 2 ( x 1 0 + x 1 0 1 ) − 2 x 1 0 + x 1 0 1 = = = = = = = = = = x 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 3