In the equation , and are the shorter sides of a right-angled triangle where is a real number and the hypotenuse is of length . If (where b and c are real numbers), find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
y 2 + z 2 = b 2 + 2 b c
x 2 + b x + c = x 2 − x y − x z + y z = x 2 + ( − ) ( y + z ) x + y z
b = − ( y + z ) , c = y z
Thus
y 2 + z 2 = ( − ( y + z ) ) 2 + 2 y z ( − ( y + z ) ) = y 2 + 2 y z + z 2 + 2 y z ( − ( y + z ) )
2 y z + 2 y z ( − ( y + z ) ) = 0
2 y z = − 2 y z ( − ( y + z ) )
1 = y + z
y 2 − z 2 = ( y + z ) ( y − z ) = y − z
y 2 − y = z 2 − z
z ( z − 1 ) y ( y − 1 ) = 1