High school math problem

Algebra Level 2

ln ( a 1 + 2 + 3 + + n ) = 3 n ( n + 1 ) \ln(a^{1+2+3+\dots+n})=3n(n+1)

Find value of the constant a a satisfying the equation above.

e 10 e^{10} e + 1 \sqrt{e}+1 sin 3 \sin \sqrt{3} e 6 e^{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Similar solution with @Sam sam 's.

ln ( a 1 + 2 + 3 + + n ) = 3 n ( n + 1 ) ln ( a n ( n + 1 ) 2 ) = 3 n ( n + 1 ) n ( n + 1 ) ln a 2 = 3 n ( n + 1 ) ln a = 6 a = e 6 \begin{aligned} \ln (a^{1+2+3+\cdots + n}) & = 3n(n+1) \\ \ln (a^{\frac {n(n+1)}2}) & = 3n(n+1) \\ \frac {n(n+1)\ln a}2 & = 3n(n+1) \\ \ln a & = 6 \\ \implies a & = \boxed {e^6} \end{aligned}

Sam Sam
Mar 8, 2020

first using rules of logs, we have

ln ( a 1 + 2 + 3 + . . . + n ) = ln ( a ) ( 1 + 2 + 3 + . . . + n ) \ln(a^{1+2+3+...+n})=\ln(a)(1+2+3+...+n)

🠢 ln ( a ) = ( 3 n ( n + 1 ) ) ( 1 + 2 + 3 + . . . + n ) \ln(a)=\frac{(3n(n+1))}{(1+2+3+...+n)}

since e ln ( a ) = a e^{\ln(a)}=a

we can isolate a a by rewriting as follows

🠢 a = e ( 3 n ( n + 1 ) ) ( 1 + 2 + 3 + . . . + n ) a=e^{\frac{(3n(n+1))}{(1+2+3+...+n)}}

note that the arithmetic sum can be expressed as n ( n + 1 ) 2 \frac{n(n+1)}{2}

so we can rewrite 3 n ( n + 1 ) ( 1 + 2 + 3 + . . . + n ) \frac{3n(n+1)}{(1+2+3+...+n)} = 2 × 3 ( n ( n + 1 ) ) ( n ( n + 1 ) ) = 6 \frac{2\times3(n(n+1))}{(n(n+1))} = 6

🠢 a = e 6 a=e^{6}

@Sam sam , you need to put a backslash "\" in front of all math function including \ln ln \ln , \sum \sum , \sin sin \sin , \cos cos \cos . They should not be in italic.

Chew-Seong Cheong - 1 year, 3 months ago

Log in to reply

Thanks, ill fix it

Sam sam - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...