High School Math Question (Version 2)

Algebra Level 2

Consider the following equations:

x 2 y 2 = 25 x^2-y^2=25

x 2 + x + x y + y + y 2 = 494 x^2+x+xy+y+y^2=494

x 3 y 3 = 469 x^3-y^3=469

Find x+y


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

x 2 y 2 + x 3 y 3 = 494 x^2 - y^2 + x^3 - y^3 = 494

( x y ) ( x + y ) + ( x y ) ( x 2 + x y + y 2 ) = 494 (x-y)(x+y) + (x-y)(x^2 + xy + y^2) = 494

( x y ) ( x 2 + x y + y 2 + x + y ) = 494 (x-y)(x^2 + xy + y^2 + x + y) = 494

( x y ) × 494 = 494 (x-y) \times 494 = 494

( x y ) = 1 (x-y) = 1

Now, x 2 y 2 = 25 x^2 - y^2 = 25

( x y ) ( x + y ) = 25 (x-y)(x+y) = 25

( x + y ) = 25 (x+y) = \boxed{25}

i cant get it, please explain.

Alvin Reyes - 7 years, 2 months ago

Log in to reply

There is nothing here to not understand. He simply added the 1st and 3rd equations and split the parts using identities x 2 y 2 = ( x + y ) ( x y ) x^2-y^2=(x+y)(x-y) and x 3 y 3 = ( x y ) ( x 2 + y 2 + x y ) x^3-y^3=(x-y)(x^2+y^2+xy) .

Then, he took ( x y ) (x-y) as a common factor from both parts and substituted the value of ( x 2 + x y + y 2 + x + y ) (x^2+xy+y^2+x+y) from the 2nd equation to get ( x y ) = 1 (x-y)=1

He substituted the value of ( x y ) (x-y) in the identity x 2 y 2 = ( x + y ) ( x y ) x^2-y^2=(x+y)(x-y) and used the given value of ( x 2 y 2 ) (x^2-y^2) to finally find out ( x + y ) = 25 (x+y)=\boxed{25}

Prasun Biswas - 7 years, 2 months ago

Which part?

Siddhartha Srivastava - 7 years, 2 months ago

13^2 - 12^2 = 169-144 = 25 so...12+13

Fasil Pv - 7 years, 1 month ago
Tunk-Fey Ariawan
Mar 17, 2014

Rewrite: x 2 y 2 = 25 ( x + y ) ( x y ) = 25 x 2 + x + x y + y + y 2 = 494 ( x + y ) + ( x 2 + x y + y 2 ) = 494 x 3 y 3 = 469 ( x y ) ( x 2 + x y + y 2 ) = 469 \begin{aligned} x^2-y^2=25&\quad\Rightarrow\quad(x+y)(x-y)=25\\ x^2+x+xy+y+y^2=494&\quad\Rightarrow\quad(x+y)+(x^2+xy+y^2)=494\\ x^3-y^3=469&\quad\Rightarrow\quad(x-y)(x^2+xy+y^2)=469 \end{aligned} Let a = x + y \;a=x+y , b = x y \;b=x-y , and c = x 2 + x y + y 2 \;c=x^2+xy+y^2 , then a b = 25 ( 1 ) a + c = 494 ( 2 ) b c = 469 ( 3 ) \begin{aligned} ab=25&\quad\quad\quad(1)\\ a+c=494&\quad\quad\quad(2)\\ bc=469&\quad\quad\quad(3) \end{aligned} from ( 1 ) (1) and ( 3 ) (3) , we obtain b c a b = 469 25 c a = 469 25 c = 469 25 a \begin{aligned} \frac{bc}{ab}&=\frac{469}{25}\\ \frac{c}{a}&=\frac{469}{25}\\ c&=\frac{469}{25}a \end{aligned} Pluging in the last part to ( 2 ) (2) , yield a + 469 25 a = 494 494 25 a = 494 a = 25. \begin{aligned} a+\frac{469}{25}a&=494\\ \frac{494}{25}a&=494\\ a&=25. \end{aligned} Thus, a = x + y = 25 a=x+y=\boxed{25} .

Abhinav Verma
Mar 15, 2014

x^2 + y^2 + xy + (x + y) = 494---------(iii) Now, x^2 + y^2 + xy = (x^3 - y^3) / (x - y) = 469 / (x - y)---(i) Now , (x - y)(x + y) = 25 , (x - y) = 25 / (x + y)---(ii) Substituting (ii) in (i) , 469 / ( 25 / (x + y) ) = 469(x+y)/25 Let , (x + y) = z Putting all values in (iii) 469z/25 + z = 494 469z + 25z = 12350 494z = 12350 z = 12350 / 494 z = 25 But , z = (x + y) Ans: (x + y) = 25

Kurush Kasad
Apr 12, 2014

its damn easy... by common sense, we know that 13^2 - 12^2 = 25. (remember Pythagoras triplets) so x=13 and y=13. so x+y= 25.

Md. Mamun Hosain
Mar 16, 2014

x^2+x+xy+y+y^2=494, (x-y)(x^2+x+xy+y+y^2)=494(x-y), (x-y)(x^2+xy+y^2)+(x+y)(x-y)=494(x-y), (x^3-y^3)+x^2-y^2=494(x-y), 469+25=494(x-y), 494=494(x-y), x-y=1. Again, x^2-y^2=25, (x+y)(x-y)=25, (x+y)*1=25, x+y=25.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...