High School Trigonometry (Part 3)

Geometry Level 3

sin 2 2 0 + cos 2 5 0 + sin 2 0 cos 5 0 = ? \sin^{2}20^{\circ}+\cos^{2}50^{\circ}+\sin20^{\circ}\cos50^{\circ} =\textbf{?}


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Potsawee Manakul
Jul 18, 2015

sin 2 2 0 + cos 2 5 0 + sin 2 0 cos 5 0 \sin^{2}20^{\circ}+\cos^{2}50^{\circ}+\sin20^{\circ}\cos50^{\circ} = ( sin 2 0 + cos 5 0 ) 2 sin 2 0 cos 5 0 =(\sin20^{\circ}+\cos50^{\circ})^{2}-\sin20^{\circ}\cos50^{\circ} = ( sin 2 0 + sin 4 0 ) 2 sin 2 0 cos 5 0 =(\sin20^{\circ}+\sin40^{\circ})^{2}-\sin20^{\circ}\cos50^{\circ} = ( 2 sin 3 0 cos 1 0 ) 2 1 2 ( sin 7 0 sin 3 0 ) =(2\sin30^{\circ}\cos10^{\circ})^{2}-\frac{1}{2}(\sin70^{\circ}-\sin30^{\circ}) = cos 2 1 0 1 2 ( sin 7 0 sin 3 0 ) =\cos^{2}10^{\circ}-\frac{1}{2}(\sin70^{\circ}-\sin30^{\circ}) = cos 2 0 + 1 2 cos 2 0 2 + sin 3 0 2 = 0.75 =\frac{\cos20^{\circ}+1}{2}-\frac{\cos 20^{\circ}}{2}+\frac{\sin 30^{\circ}}{2} =0.75

@Potsawee Manakul Same method, upvoted! x

Jessica Wang - 5 years, 11 months ago
Chew-Seong Cheong
Jul 18, 2015

sin 2 2 0 + cos 2 5 0 + sin 2 0 cos 5 0 = cos 2 7 0 + cos 2 5 0 + cos 7 0 cos 5 0 = ( cos 7 0 + cos 5 0 ) 2 cos 7 0 cos 5 0 = ( cos ( 60 + 10 ) + cos ( 60 10 ) ) 2 cos ( 60 + 10 ) cos ( 60 10 ) = ( 2 cos 6 0 cos 1 0 ) 2 ( cos 6 0 cos 1 0 sin 6 0 sin 1 0 ) ( cos 6 0 cos 1 0 + sin 6 0 sin 1 0 ) = cos 2 1 0 ( 1 2 cos 1 0 3 2 sin 1 0 ) ( 1 2 cos 1 0 + 3 2 sin 1 0 ) = cos 2 1 0 1 4 cos 2 1 0 + 3 4 sin 2 1 0 = 3 4 cos 2 1 0 + 3 4 sin 2 1 0 = 3 4 = 0.75 \sin^2{20^\circ} + \cos^2{50^\circ} + \sin{20^\circ} \cos{50^\circ} \\ = \cos^2{70^\circ} + \cos^2{50^\circ} + \cos{70^\circ} \cos{50^\circ} \\ = (\cos{70^\circ} + \cos{50^\circ})^2 - \cos{70^\circ} \cos{50^\circ} \\ = (\cos{(60+10)^\circ} + \cos{(60-10)^\circ})^2 - \cos{(60+10)^\circ} \cos{(60-10)^\circ} \\ = (2\cos{60^\circ}\cos{10^\circ})^2 \\ \quad - (\cos{60^\circ}\cos{10^\circ} - \sin{60^\circ}\sin{10^\circ}) (\cos{60^\circ}\cos{10^\circ} + \sin{60^\circ}\sin{10^\circ}) \\ = \cos^2{10^\circ} - \left(\frac{1}{2}\cos{10^\circ} - \frac{\sqrt{3}}{2}\sin{10^\circ} \right) \left(\frac{1}{2}\cos{10^\circ} + \frac{\sqrt{3}}{2}\sin{10^\circ} \right) \\ = \cos^2{10^\circ} - \frac{1}{4}\cos^2{10^\circ} + \frac{3}{4}\sin^2{10^\circ} \\ = \frac{3}{4}\cos^2{10^\circ} + \frac{3}{4}\sin^2{10^\circ} \\ = \frac{3}{4} = \boxed{0.75}

Great solution

Sai Ram - 5 years, 10 months ago
Raghav Chaudhary
Aug 6, 2015

Consider the identity a 3 b 3 = ( a b ) ( a 2 + b 2 + a b ) a^{3} -b^{3}=(a-b)(a^{2}+b^{2}+ab)

We have sin 3 2 0 cos 3 5 0 = ( sin 2 0 cos 5 0 ) ( sin 2 2 0 + cos 2 5 0 + s i n 2 0 c o s 5 0 ) \sin^{3}20^{\circ}-\cos^{3}50^{\circ} =(\sin20^{\circ}-\cos50^ {\circ})(\sin^{2}20^{\circ}+\cos^{2}50^{\circ}+sin20^{\circ}cos50^{\circ})

So, we now need to evaluate

sin 3 2 0 cos 3 5 0 sin 2 0 cos 5 0 \frac{\sin^{3}20^{\circ}-\cos^{3}50^{\circ}}{\sin20^{\circ}-\cos50^ {\circ}}

We now use the identity

sin 3 θ = 3 sin θ 4 sin 3 θ \sin3\theta =3\sin\theta - 4\sin^{3}\theta cos 3 θ = 4 cos 3 θ 3 cos θ \cos3\theta =4\cos^{3}\theta - 3\cos\theta

Now, sin 6 0 = 3 sin 2 0 4 sin 3 2 0 . . . . . . . . . . . . . . ( 1 ) \sin60^{\circ} =3\sin20^{\circ} - 4\sin^{3}20^{\circ} .............. (1) cos 15 0 = 4 cos 3 5 0 3 cos 2 0 . . . . . . . . . . . . . . ( 2 ) \cos150^{\circ} =4\cos^{3}50^{\circ} - 3\cos20^{\circ} .............. (2)

Realizing cos 15 0 = sin 6 0 \cos150^{\circ} = - \sin60^{\circ} , we rewrite (2) as:

sin 6 0 = 4 cos 3 5 0 3 cos 2 0 . . . . . . . . . . . . . . ( 3 ) - \sin60^{\circ} = 4\cos^{3}50^{\circ} - 3\cos20^{\circ} .............. (3)

Adding (1) and (3), we have 0 = 3 ( sin 2 0 cos 5 0 ) 4 ( sin 3 2 0 cos 3 5 0 ) 0 = 3(\sin20^{\circ}-\cos50^{\circ})-4(\sin^{3}20^{\circ}-\cos^{3}50^{\circ})

So, sin 3 2 0 cos 3 5 0 sin 2 0 cos 5 0 = 3 4 \frac{\sin^{3}20^{\circ}-\cos^{3}50^{\circ}}{\sin20^{\circ}-\cos50^ {\circ}}=\frac{3}{4}

which is 0.75 0.75

sin20=sin(50-30)=sin50cos30-sin30cos50=sqrt3/2sin50-1/2cos50=>. 1.(sqrt3/2sin50-1/2cos50)^2=3/4sin^2(50)+1/4cos^2(50)-sqrt3/2cos50sin50 si 2. sin20 cos50=(sqrt3/2sin50-1/2cos50) cos50 =>1.+2.=3/4

Radu Ion - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...