High school Trigonometry

Geometry Level 3

cos ( 1 5 ) + cos ( 8 7 ) + cos ( 15 9 ) + cos ( 23 1 ) + cos ( 30 3 ) = ? \cos(15^{\circ})+\cos(87^{\circ})+\cos(159^{\circ})+\cos(231^{\circ})+\cos(303^{\circ}) = \ ?

Give your answer to 1 decimal place.


The answer is 0.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Rishabh Tripathi
Jul 18, 2015

We can see that the angles are in Arithmetic Progression,

we know,

cos α + c o s ( α + β ) + c o s ( α + 2 β ) + . . . + cos ( α + ( n 1 ) β ) \cos\alpha + cos(\alpha + \beta) + cos(\alpha + 2\beta) + ... + \cos(\alpha + (n-1)\beta)

= cos ( α + n 1 2 β ) sin ( n β 2 ) s i n ( β 2 ) = \frac{\cos(\alpha+ \frac{n-1}{2}\beta)\sin(\frac{n\beta}{2})}{sin(\frac{\beta}{2})}

So, this expression would give

= cos 15 9 sin 18 0 sin 3 6 = \frac{\cos159^{\circ}\sin180^{\circ}}{\sin36^{\circ}}

sin 18 0 = 0 \sin180^{\circ} = 0

Therefore the answer is 0 0

Chew-Seong Cheong
Jul 18, 2015

cos 1 5 + cos 8 7 + cos 15 9 + cos 23 1 + cos 30 3 = cos 1 5 + cos 8 7 cos 2 1 cos 5 1 + cos 5 7 = cos 1 5 cos 2 1 cos 5 1 + cos 5 7 + cos 8 7 = cos ( 18 3 ) cos ( 18 + 3 ) cos ( 54 3 ) + cos ( 54 + 3 ) + cos 8 7 = 2 sin 1 8 sin 3 + 2 sin 5 4 sin 3 + sin 3 = 2 sin 3 ( sin 1 8 sin 5 4 + 1 2 ) = 2 sin 3 ( cos 7 2 cos 3 6 + 1 2 ) = 2 sin 3 ( [ cos 7 2 + cos 14 4 ] + 1 2 ) = 2 sin 3 ( [ 1 2 ] + 1 2 ) = 0 \cos{15^\circ} + \cos{87^\circ} \color{#D61F06}{+ \cos{159^\circ}} \color{#3D99F6}{+ \cos{231^\circ}} \color{#20A900}{+\cos{303^\circ}} \\ = \cos{15^\circ} + \cos{87^\circ} \color{#D61F06}{- \cos{21^\circ}} \color{#3D99F6}{- \cos{51^\circ}} \color{#20A900} {+ \cos{57^\circ}} \\ = \cos{15^\circ} - \cos{21^\circ} - \cos{51^\circ} + \cos{57^\circ} + \cos{87^\circ} \\ = \color{#D61F06}{\cos{(18-3)^\circ} - \cos{(18+3)^\circ}} - \color{#3D99F6}{\cos{(54-3)^\circ} + \cos{(54+3)^\circ}} + \color{#20A900} {\cos{87^\circ}} \\ = \color{#D61F06}{2\sin{18^\circ} \sin{3^\circ}} + \color{#3D99F6}{2\sin{54^\circ} \sin{3^\circ}} + \color{#20A900}{\sin{3^\circ}} \\ = 2\sin{3^\circ} \left(\color{#D61F06}{\sin{18^\circ}} - \color{#3D99F6}{\sin{54^\circ}} + \color{#20A900}{\frac{1}{2}} \right) \\ = 2\sin{3^\circ} \left( \color{#D61F06}{\cos{72^\circ}} \color{#3D99F6}{- \cos{36^\circ}} + \frac{1}{2} \right) \\ = 2\sin{3^\circ} \left( \left[ \cos{72^\circ} \color{#3D99F6}{+ \cos{144^\circ}} \right] + \frac{1}{2} \right) \\ = 2\sin{3^\circ} \left( \left[-\frac{1}{2}\right] + \frac{1}{2} \right) = \boxed{0}

Moderator note:

A much simpler approach would be to recognize that the angles are in an Arithmetic Progression, and then use the roots of unity approach that you love.

Jessica Wang
Jul 18, 2015

cos 1 5 + cos 8 7 + cos 15 9 + cos 23 1 + cos 30 3 \cos15^{\circ}+\cos87^{\circ}+\cos159^{\circ}+\cos231^{\circ}+\cos303^{\circ}

= cos 1 5 + cos 8 7 cos 2 1 cos 5 1 + cos 5 7 =\cos15^{\circ}+\cos87^{\circ}-\cos21^{\circ}-\cos51^{\circ}+\cos57^{\circ}

= ( cos 1 5 cos 2 1 ) ( cos 5 1 cos 5 7 ) + cos 8 7 =(\cos15^{\circ}-\cos21^{\circ})-(\cos51^{\circ}-\cos57^{\circ})+\cos87^{\circ}

= 2 sin 1 8 sin 3 2 sin 5 4 sin 3 + cos 8 7 =2\sin18^{\circ}\sin3^{\circ}-2\sin54^{\circ}\sin3^{\circ}+\cos87^{\circ}

= 2 sin 3 ( sin 1 8 sin 5 4 ) + cos 8 7 =2\sin3^{\circ}(\sin18^{\circ}-\sin54^{\circ})+\cos87^{\circ}

= 2 sin 3 ( 2 cos 3 6 sin 1 8 ) + cos 8 7 =2\sin3^{\circ}(-2\cos36^{\circ}\sin18^{\circ})+\cos87^{\circ}

= 2 sin 3 ( 2 cos 3 6 sin 1 8 cos 1 8 cos 1 8 ) + cos 8 7 =2\sin3^{\circ}(-\frac{2\cos36^{\circ}\sin18^{\circ}\cos18^{\circ}}{\cos18^{\circ}})+\cos87^{\circ}

= 2 sin 3 ( sin 3 6 cos 3 6 cos 1 8 ) + cos 8 7 =2\sin3^{\circ}(-\frac{\sin36^{\circ}\cos36^{\circ}}{\cos18^{\circ}})+\cos87^{\circ}

= 2 sin 3 ( 0.5 sin 7 2 cos 1 8 ) + cos 8 7 =2\sin3^{\circ}(-\frac{0.5\sin72^{\circ}}{\cos18^{\circ}})+\cos87^{\circ}

= 2 sin 3 ( 0.5 ) + cos 8 7 =2\sin3^{\circ}\cdot (-0.5)+\cos87^{\circ}

= sin 3 + cos 8 7 =-\sin3^{\circ}+\cos87^{\circ}

= 0 =\boxed{0} .

Rajen Kapur
Jul 18, 2015

c o s 1 5 + c o s ( 180 21 ) + c o s ( 180 + 51 ) + c o s ( 360 57 ) + c o s 8 7 cos 15^{\circ} + cos (180 - 21)^{\circ} + cos (180 + 51)^{\circ} + cos (360 - 57)^{\circ} + cos 87^{\circ} = c o s 1 5 c o s 2 1 c o s 5 1 + c o s 5 7 + c o s 8 7 = cos 15^{\circ} - cos 21^{\circ} - cos 51^{\circ} + cos 57^{\circ} + cos 87^{\circ} = 2 s i n 1 8 s i n 3 2 s i n 5 4 s i n 3 + c o s 8 7 = 2 sin 18^{\circ} sin 3^{\circ} - 2 sin 54^{\circ} sin 3^{\circ} + cos 87^{\circ} = s i n 3 + c o s 8 7 = 0 = - sin 3^{\circ} + cos 87^{\circ} = 0 , using well known values of s i n 1 8 a n d s i n 5 4 . sin 18^{\circ}\ \ and\ \ sin 54^{\circ}.

Jeremy Hodges
Aug 13, 2015

Consider the complex nos with moduli 1 and arguments 15, 87, 154, 231 and 303. Since the arguments have a common difference of 72 the complex nos are the fifth roots of unity each multiplied by the complex no with modulus 1 and argument 15. Take out this last complex no as a common factor. The sum of the roots of unity is zero multiplied by the common factor is still zero. The sum of the cosines represents the real part and the real part of zero is still zero. Hence the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...