cos ( 1 5 ∘ ) + cos ( 8 7 ∘ ) + cos ( 1 5 9 ∘ ) + cos ( 2 3 1 ∘ ) + cos ( 3 0 3 ∘ ) = ?
Give your answer to 1 decimal place.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
cos 1 5 ∘ + cos 8 7 ∘ + cos 1 5 9 ∘ + cos 2 3 1 ∘ + cos 3 0 3 ∘ = cos 1 5 ∘ + cos 8 7 ∘ − cos 2 1 ∘ − cos 5 1 ∘ + cos 5 7 ∘ = cos 1 5 ∘ − cos 2 1 ∘ − cos 5 1 ∘ + cos 5 7 ∘ + cos 8 7 ∘ = cos ( 1 8 − 3 ) ∘ − cos ( 1 8 + 3 ) ∘ − cos ( 5 4 − 3 ) ∘ + cos ( 5 4 + 3 ) ∘ + cos 8 7 ∘ = 2 sin 1 8 ∘ sin 3 ∘ + 2 sin 5 4 ∘ sin 3 ∘ + sin 3 ∘ = 2 sin 3 ∘ ( sin 1 8 ∘ − sin 5 4 ∘ + 2 1 ) = 2 sin 3 ∘ ( cos 7 2 ∘ − cos 3 6 ∘ + 2 1 ) = 2 sin 3 ∘ ( [ cos 7 2 ∘ + cos 1 4 4 ∘ ] + 2 1 ) = 2 sin 3 ∘ ( [ − 2 1 ] + 2 1 ) = 0
A much simpler approach would be to recognize that the angles are in an Arithmetic Progression, and then use the roots of unity approach that you love.
cos 1 5 ∘ + cos 8 7 ∘ + cos 1 5 9 ∘ + cos 2 3 1 ∘ + cos 3 0 3 ∘
= cos 1 5 ∘ + cos 8 7 ∘ − cos 2 1 ∘ − cos 5 1 ∘ + cos 5 7 ∘
= ( cos 1 5 ∘ − cos 2 1 ∘ ) − ( cos 5 1 ∘ − cos 5 7 ∘ ) + cos 8 7 ∘
= 2 sin 1 8 ∘ sin 3 ∘ − 2 sin 5 4 ∘ sin 3 ∘ + cos 8 7 ∘
= 2 sin 3 ∘ ( sin 1 8 ∘ − sin 5 4 ∘ ) + cos 8 7 ∘
= 2 sin 3 ∘ ( − 2 cos 3 6 ∘ sin 1 8 ∘ ) + cos 8 7 ∘
= 2 sin 3 ∘ ( − cos 1 8 ∘ 2 cos 3 6 ∘ sin 1 8 ∘ cos 1 8 ∘ ) + cos 8 7 ∘
= 2 sin 3 ∘ ( − cos 1 8 ∘ sin 3 6 ∘ cos 3 6 ∘ ) + cos 8 7 ∘
= 2 sin 3 ∘ ( − cos 1 8 ∘ 0 . 5 sin 7 2 ∘ ) + cos 8 7 ∘
= 2 sin 3 ∘ ⋅ ( − 0 . 5 ) + cos 8 7 ∘
= − sin 3 ∘ + cos 8 7 ∘
= 0 .
c o s 1 5 ∘ + c o s ( 1 8 0 − 2 1 ) ∘ + c o s ( 1 8 0 + 5 1 ) ∘ + c o s ( 3 6 0 − 5 7 ) ∘ + c o s 8 7 ∘ = c o s 1 5 ∘ − c o s 2 1 ∘ − c o s 5 1 ∘ + c o s 5 7 ∘ + c o s 8 7 ∘ = 2 s i n 1 8 ∘ s i n 3 ∘ − 2 s i n 5 4 ∘ s i n 3 ∘ + c o s 8 7 ∘ = − s i n 3 ∘ + c o s 8 7 ∘ = 0 , using well known values of s i n 1 8 ∘ a n d s i n 5 4 ∘ .
Consider the complex nos with moduli 1 and arguments 15, 87, 154, 231 and 303. Since the arguments have a common difference of 72 the complex nos are the fifth roots of unity each multiplied by the complex no with modulus 1 and argument 15. Take out this last complex no as a common factor. The sum of the roots of unity is zero multiplied by the common factor is still zero. The sum of the cosines represents the real part and the real part of zero is still zero. Hence the answer.
Problem Loading...
Note Loading...
Set Loading...
We can see that the angles are in Arithmetic Progression,
we know,
cos α + c o s ( α + β ) + c o s ( α + 2 β ) + . . . + cos ( α + ( n − 1 ) β )
= s i n ( 2 β ) cos ( α + 2 n − 1 β ) sin ( 2 n β )
So, this expression would give
= sin 3 6 ∘ cos 1 5 9 ∘ sin 1 8 0 ∘
sin 1 8 0 ∘ = 0
Therefore the answer is 0