High Summation!

Calculus Level 5

0.0 5 1000 r = 0 ( 1000 + r ) ( 1000 + r 1000 ) 0.9 5 r = ? 0.05^{1000} \sum_{r=0}^{\infty} (1000+r){{1000+r}\choose{1000}}0.95^r = \ ?

( m n ) = m ! n ! ( m n ) ! \dbinom mn = \dfrac {m!}{n!(m-n)!} denotes the binomial coefficient .


All of my problems are original .


The answer is 400380.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aryan Sanghi
Dec 16, 2020

Let n = 1000 n = 1000 and p = 0.05 p = 0.05

E = p n r = 0 ( n + r ) × ( n + r n ) × ( 1 p ) r E = p^n\sum_{r=0}^{\infty} (n + r) × {{n+r} \choose n} × (1-p)^r

E = p n n ! r = 0 ( n + r ) × ( r + 1 ) ( r + 2 ) ( r + n ) × ( 1 p ) r \boxed{E = \frac{p^n}{n!} \sum_{r=0}^{\infty} (n + r) × (r+1)(r+2)\ldots(r+n)× (1-p)^r}

Let's evaluate above sum.


Let,

S = r = 0 ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + n ) × x r S = \sum_{r=0}^{\infty} (r+1)(r+2)(r+3)\ldots(r+n) ×x^r

x S = r = 0 ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + n ) × x r + 1 xS = \sum_{r=0}^{\infty} (r+1)(r+2)(r+3)\ldots(r+n) ×x^{r+1}

S ( 1 x ) = r = 0 n × ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + n 1 ) × x r S(1-x) = \sum_{r=0}^{\infty} n×(r+1)(r+2)(r+3)\ldots(r+n-1) ×x^r

x S ( 1 x ) = r = 0 n × ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + n 1 ) × x r + 1 xS(1-x) = \sum_{r=0}^{\infty} n×(r+1)(r+2)(r+3)\ldots(r+n-1) ×x^{r+1}

S ( 1 x ) 2 = r = 0 n ( n 1 ) × ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + n 2 ) × x r S(1-x)^2 = \sum_{r=0}^{\infty} n(n-1)×(r+1)(r+2)(r+3)\ldots(r+n-2) ×x^r

Continuing, we get

S ( 1 x ) n = r = 0 n × ( n 1 ) × ( n 2 ) × × 2 × 1 × x r = n ! r = 0 x r S(1-x)^n = \sum_{r=0}^{\infty} n×(n-1)×(n-2)×\ldots×2×1 ×x^r = n! \sum_{r=0}^{\infty}x^r

S = n ! ( 1 x ) n + 1 \boxed{S = \frac{n!}{(1-x)^{n+1}}}


Let, k R k \in R^- and

f ( k ) = r = 0 e k ( n + r ) × ( r + 1 ) ( r + 2 ) ( r + n ) × x r f(k) = \sum_{r=0}^{\infty}e^{k(n+r)}×(r+1)(r+2)\ldots(r+n)×x^r

f ( k ) = e k n r = 0 ( r + 1 ) ( r + 2 ) ( r + n ) × x r e k r f(k) = e^{kn}\sum_{r=0}^{\infty}(r+1)(r+2)\ldots(r+n)×x^re^{kr}

Comparing with S S , we get

f ( k ) = r = 0 e k ( n + r ) × ( r + 1 ) ( r + 2 ) ( r + n ) × x r = e k n n ! ( 1 x e k ) n + 1 f(k) = \sum_{r=0}^{\infty}e^{k(n+r)}×(r+1)(r+2)\ldots(r+n)×x^r = \frac{e^{kn}n!}{(1-xe^k)^{n+1}}

f ( k ) = r = 0 e k ( n + r ) × ( n + r ) × ( r + 1 ) ( r + 2 ) ( r + n ) × x r = n e k n ( 1 x e k ) + e k n ( n + 1 ) × e k x ( 1 x e k ) n + 2 n ! f'(k) = \sum_{r=0}^{\infty}e^{k(n+r)}×(n+r)×(r+1)(r+2)\ldots(r+n)×x^r = \frac{ne^{kn}(1-xe^{k}) + e^{kn}(n+1)×e^kx}{(1-xe^k)^{n+2}}n!

Now , x = 1 p x = 1-p

f ( 0 ) = r = 0 ( n + r ) × ( r + 1 ) ( r + 2 ) ( r + n ) × x r = n ! ( n + 1 ) p p n + 2 \boxed{f'(0) = \sum_{r=0}^{\infty}(n+r)×(r+1)(r+2)\ldots(r+n)×x^r = n!\frac{(n+1)-p}{p^{n+2}}}

E = p n n ! f ( 0 ) E = \frac{p^n}{n!}f'(0)

E = ( n + 1 ) p p 2 \color{#3D99F6}{\boxed{E = \frac{(n+1)-p}{p^2}}}

Putting n = 1000 n = 1000 and p = 0.05 p = 0.05 , we get

E = 400380 \boxed{E=400380}

Pi Han Goh
Dec 17, 2020

We start with the geometric series, r = 0 p r = 1 1 p \sum \limits_{r=0}^\infty p^r = \dfrac1{1-p} , where p < 1 |p| < 1 . By diffferentiating this equation with respect to p p for a total of n n times, we will get r = 0 ( r + n n ) p r = 1 ( 1 p ) n + 1 . \sum \limits_{r=0}^\infty \binom{r+n}n p^r = \dfrac1{(1-p)^{n+1}} . Hence, r = 0 ( r + n ) ( r + n n ) p r = r = 0 ( r + n + 1 1 ) ( r + n n ) p r 0 = r = 0 ( r + n + 1 ) ( r + n n ) p r r = 0 ( r + n n ) p r 0 = d d p [ r = 0 ( r + n n ) p r ] [ r = 0 ( r + n n ) p r ] 0 = n + 1 ( 1 p ) n + 2 1 ( 1 p ) n + 1 0 = p + n ( 1 p ) n + 2 \newcommand{\sumsum}{\displaystyle \sum_{r=0}^\infty} \newcommand{\bignewline}{ \\ \phantom0 \\ } \begin{array} {r c l} \sumsum (r + n) \binom{r+n}n p^r &=& \sumsum (r + n + 1 - 1) \binom{r+n}n p^r \bignewline &=& \sumsum (r + n + 1) \binom{r+n}n p^r - \sumsum \binom{r+n}n p^r \bignewline &=& \dfrac{d}{dp} \left[ \sumsum \binom{r+n}n p^r \right] - \left[ \sumsum \binom{r+n}n p^r \right] \bignewline &=& \dfrac{n+1}{(1-p)^{n+2}} - \dfrac 1{(1-p)^{n+1}} \bignewline &=& \dfrac{p + n}{(1-p)^{n+2}} \end{array} In this case, n = 1000 , p = 0.95 n=1000, p = 0.95 , r = 0 ( r + 1000 ) ( r + 1000 1000 ) 0.9 5 r = 0.95 + 1000 0.0 5 1002 0.0 5 1000 r = 0 ( r + 1000 ) ( r + 1000 1000 ) 0.9 5 r = 1000.95 0.0 5 2 = 400380 . \sum_{r=0}^\infty (r + 1000) \binom{r+1000}{1000} \cdot 0.95^r = \dfrac{0.95 + 1000}{0.05^{1002}} \quad \Leftrightarrow \quad 0.05^{1000} \sum_{r=0}^\infty (r + 1000) \binom{r+1000}{1000} \cdot 0.95^r = \dfrac{1000.95}{0.05^2} = \boxed{400380}.

Excellent solution sir. Thanku for sharing it with us. :)

Aryan Sanghi - 5 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...