Higher powers

Calculus Level 5

E = π / 2 0 cos 21 ( x ) sin 17 ( x ) d x \large \mathscr{E} = \displaystyle \int_{-\pi/2}^{0} \cos^{21}(x) \sin^{17}(x) \, dx

If E \mathscr{E} can be expressed in the form a b - \dfrac{a}{b} , with a a and b b are coprime positive integers , find a + b a + b .

No calculators allowed.


The answer is 1662805.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 16, 2016

E = π 2 0 cos 21 x sin 17 x d x Let u = x cos x = cos u , sin x = sin u , d u = d x = π 2 0 cos 21 u sin 17 u d u = 0 π 2 cos 21 u sin 17 u d u = 1 2 B ( 11 , 9 ) B ( m , n ) is beta function = 1 2 Γ ( 11 ) Γ ( 9 ) Γ ( 20 ) Γ ( n ) is gamma function = 1 2 10 ! 8 ! 19 ! = 1 1662804 \begin{aligned} \mathscr E & = \int_{-\frac \pi 2}^0 \cos^{21} x \ \sin^{17} x \ dx \quad \quad \small \color{#3D99F6}{\text{Let }u = - x \implies \cos x = \cos u, \ \sin x = - \sin u, \ du = - dx} \\ & = \int_{\frac \pi 2}^0 \cos^{21} u \ \sin^{17} u \ du \\ & = - \int ^{\frac \pi 2}_0 \cos^{21} u \ \sin^{17} u \ du \\ & = - \frac 12 \color{#3D99F6}{B \left(11,9 \right) \quad \quad \small B(m,n) \text{ is beta function}} \\ & = - \frac 12 \cdot \color{#3D99F6}{\frac{\Gamma (11) \Gamma (9)}{\Gamma(20)} \quad \quad \small \Gamma (n) \text{ is gamma function}} \\ & = - \frac 12 \cdot \color{#3D99F6}{\frac{10! 8!}{19!}} \\ & = - \frac 1{1662804} \end{aligned}

a + b = 1 + 1662804 = 1662805 \implies a + b = 1+1662804 = \boxed{1662805}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...