Highest Possible Number for x x (Part 3)

( k = 1 12 k ! ) 2 x = y \large \frac{\left(\prod_{k=1}^{12} k!\right)}{2^{x}}=y

What is the largest possible integer value of x x such that y y is also an integer?

Try also Part 1 and Part 2 .


The answer is 56.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 16, 2017

y = k = 1 12 k ! 2 x Factorize all k ! = 2 q 2 3 q 5 5 q 5 7 q 7 1 1 q 11 2 x where q j is the power of prime factor p j \begin{aligned} y & = \frac {\prod_{k=1}^{12}k!}{2^x} & \small \color{#3D99F6} \text{Factorize all }k! \\ & = \frac {2^{q_2}3^{q_5}5^{q_5}7^{q_7}11^{q_{11}}}{2^x} & \small \color{#3D99F6} \text{where }q_j \text{ is the power of prime factor }p_j \end{aligned}

For y y to be an integer 2 x 2 q 2 3 q 5 5 q 5 7 q 7 1 1 q 11 2^x \mid 2^{q_2}3^{q_5}5^{q_5}7^{q_7}11^{q_{11}} . Then max ( x ) = q 2 \max (x) = q_2 .

We note that the formula to find the power of prime factor r p r_p in n ! n! is given by r p ( n ) = k = 1 n p k r_p(n) = \displaystyle \sum_{k=1}^\infty \left \lfloor \dfrac n{p^k} \right \rfloor . Therefore,

p 2 = n = 1 12 r 2 ( n ) = n = 1 12 k = 1 n 2 k = n = 1 12 n 2 + n = 1 12 n 4 + n = 1 12 n 8 = n = 2 12 n 2 + n = 4 12 n 4 + n = 8 12 n 8 = 2 ( 1 + 2 + 3 + 4 + 5 ) + 6 + 4 ( 1 + 2 ) + 3 + 5 = 36 + 15 + 5 = 56 \begin{aligned} p_2 & = \sum_{n=1}^{12} r_2(n) = \sum_{n=1}^{12} \sum_{k=1}^\infty \left \lfloor \frac n{2^k} \right \rfloor \\ & = \sum_{n=1}^{12} \left \lfloor \frac n2 \right \rfloor + {\color{#3D99F6}\sum_{n=1}^{12} \left \lfloor \frac n4 \right \rfloor} + \color{#D61F06}\sum_{n=1}^{12} \left \lfloor \frac n8 \right \rfloor \\ & = \sum_{n=2}^{12} \left \lfloor \frac n2 \right \rfloor + {\color{#3D99F6}\sum_{n=4}^{12} \left \lfloor \frac n4 \right \rfloor} + \color{#D61F06}\sum_{n=8}^{12} \left \lfloor \frac n8 \right \rfloor \\ & = 2(1+2+3+4+5)+6 + {\color{#3D99F6}4(1+2)+3} + \color{#D61F06} 5 \\ & = 36 + {\color{#3D99F6}15} + \color{#D61F06} 5 \\ & = \boxed{56} \end{aligned}


Notation: \lfloor \cdot \rfloor denotes the floor function .

Joseph Newton
Dec 15, 2017

The product written out looks like this:

1 ! × 2 ! × 3 ! × 4 ! × 5 ! × 6 ! × 7 ! × 8 ! × 9 ! × 10 ! × 11 ! × 12 ! 1!\times2!\times3!\times4!\times5!\times6!\times7!\times8!\times9!\times10!\times11!\times12!

The factorials all written out look like this:

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 × 11 × 12 × 1\times2\times3\times4\times5\times6\times7\times8\times9\times10\times11\times12\times

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 × 11 × 1\times2\times3\times4\times5\times6\times7\times8\times9\times10\times11\times

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 × 1\times2\times3\times4\times5\times6\times7\times8\times9\times10\times

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 1\times2\times3\times4\times5\times6\times7\times8\times9\times

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 1\times2\times3\times4\times5\times6\times7\times8\times

1 × 2 × 3 × 4 × 5 × 6 × 7 × 1\times2\times3\times4\times5\times6\times7\times

1 × 2 × 3 × 4 × 5 × 6 × 1\times2\times3\times4\times5\times6\times

1 × 2 × 3 × 4 × 5 × 1\times2\times3\times4\times5\times

1 × 2 × 3 × 4 × 1\times2\times3\times4\times

1 × 2 × 3 × 1\times2\times3\times

1 × 2 × 1\times2\times

1 1

We want to divide this by as many 2s as possible to get the highest value for x, so we need to know exactly how many 2s there are in here.

Each 2 is divisible by 2 once.

Each 4 is divisible by 2 twice.

Each 6 is divisible by 2 once.

Each 8 is divisible by 2 three times.

Each 10 is divisible by 2 once.

Each 12 is divisible by 2 twice.

This gives us the total number of 2s in the prime factorisation of this huge number:

( # o f 2 s ) + 2 ( # o f 4 s ) + ( # o f 6 s ) + 3 ( # o f 8 s ) + ( # o f 10 s ) + 2 ( # o f 12 s ) (\#\,of\,2s)+2(\#\,of\,4s)+(\#\,of\,6s)+3(\#\,of\,8s)+(\#\,of\,10s)+2(\#\,of\,12s)

11 + 2 ( 9 ) + 7 + 3 ( 5 ) + 3 + 2 ( 1 ) 11+2(9)+7+3(5)+3+2(1)

= 56 =56

So the highest possible integer value of x is 56.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...