Given the matrix A = ∣ ∣ ∣ ∣ ∣ ∣ 4 1 3 2 6 1 3 5 2 ∣ ∣ ∣ ∣ ∣ ∣ m o d 2 6 , use a Hill cipher to decipher the message V E Z Z M F Y Q R G T F N R W S S Z Q I L using modulo 26, where A → 0 , B → 1 , … , Z → 2 5 , and enter the result as a string of integers.
What does the deciphered message state?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Note: det ( A ) = 3 and g cd ( 3 , 2 6 ) = 1 , so for each block X j the system A X j = B j m o d 2 6 has a unique solution X j = A − 1 B j m o d 2 6 , where ( 1 < = j < = 7 ) .
Using seven blocks for V E Z Z M F Y Q R G T F N R W S S Z Q I L we obtain:
2 1 4 2 5
2 5 1 2 5
2 4 1 6 1 7
6 1 9 5
1 3 1 7 2 2
1 8 1 8 2 5
1 6 8 1 1
Begin: Find A − 1 .
B = A ∣ I = ⎣ ⎢ ⎢ ⎡ 4 1 3 2 6 1 3 5 2 1 0 0 0 1 0 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
R 1 ↔ R 2 →
⎣ ⎢ ⎢ ⎡ 1 4 3 6 2 1 5 3 2 0 1 0 1 0 0 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
2 2 ∗ R o w 1 + R o w 2 and 2 3 ∗ R o w 1 + R o w 3 →
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 6 4 9 5 9 1 3 0 1 0 1 2 2 2 3 0 0 1 ⎦ ⎥ ⎥ ⎤ m o d 2 6
R o w 2 ↔ R o w 3 →
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 6 9 4 5 1 3 9 0 0 1 1 2 3 2 2 0 1 0 ⎦ ⎥ ⎥ ⎤ m o d 2 6
3 ∗ R o w 2 →
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 6 1 4 5 1 3 9 0 0 1 1 1 7 2 2 0 3 0 ⎦ ⎥ ⎥ ⎤ m o d 2 6
2 0 ∗ R o w 2 + R o w 1 and 2 2 ∗ R o w 2 + R o w 3 →
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 0 1 0 5 1 3 9 0 0 1 3 1 7 6 8 3 1 4 ⎦ ⎥ ⎥ ⎤ m o d 2 6
3 ∗ R o w 3 →
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 0 1 0 5 1 3 1 0 0 3 3 1 7 1 8 8 3 6 ⎦ ⎥ ⎥ ⎤ m o d 2 6
1 3 ∗ R o w 3 + R o w 2 and 2 1 ∗ R o w 3 + R o w 1 →
B = ⎣ ⎢ ⎢ ⎡ 1 0 0 0 1 0 0 0 1 1 1 1 3 3 1 7 1 7 1 8 6 3 6 ⎦ ⎥ ⎥ ⎤ m o d 2 6
⟹
A − 1 = ∣ ∣ ∣ ∣ ∣ ∣ 1 1 1 3 3 1 7 1 7 1 8 6 3 1 6 ∣ ∣ ∣ ∣ ∣ ∣ m o d 2 6 .
Deciphering the first block ⎣ ⎢ ⎢ ⎡ 2 1 4 2 5 ⎦ ⎥ ⎥ ⎤ :
X 1 = A − 1 ∗ B 1 m o d 2 6 = ⎣ ⎢ ⎢ ⎡ 1 1 1 3 3 1 7 1 7 1 8 6 3 1 6 ⎦ ⎥ ⎥ ⎤ ∗ ⎣ ⎢ ⎢ ⎡ 2 1 4 2 5 ⎦ ⎥ ⎥ ⎤ m o d 2 6 = ⎣ ⎢ ⎢ ⎡ 7 0 1 5 ⎦ ⎥ ⎥ ⎤ m o d 2 6 :
Deciphering the second block ⎣ ⎢ ⎢ ⎡ 2 5 1 2 5 ⎦ ⎥ ⎥ ⎤ :
X 2 = A − 1 ∗ B 2 m o d 2 6 = ⎣ ⎢ ⎢ ⎡ 1 1 1 3 3 1 7 1 7 1 8 6 3 1 6 ⎦ ⎥ ⎥ ⎤ ∗ ⎣ ⎢ ⎢ ⎡ 2 5 1 2 5 ⎦ ⎥ ⎥ ⎤ m o d 2 6 = ⎣ ⎢ ⎢ ⎡ 1 5 2 4 7 ⎦ ⎥ ⎥ ⎤ m o d 2 6 :
Repeating the same procedure for the remaining blocks we obtain:
1 4 1 1 1 8
3 0 2 4
1 8 4 2 1
4 1 7 2 4
1 4 1 3 4
The plain text message is:
H A P P Y H O L I D A Y S E V E R Y O N E
As a string of integers we obtain: 7 0 1 5 1 5 2 4 7 1 4 1 1 8 3 0 2 4 1 8 4 2 1 4 1 7 2 4 1 4 1 3 4
H A P P Y H O L I D A Y S E V E R Y O N E !