Hill Cipher for the Holidays.

Level pending

Given the matrix A = 3 5 2 7 m o d 26 A= \begin{vmatrix}{3} && {5} \\ {2} && {7}\end{vmatrix} \bmod{26} , use a Hill cipher to decipher the message V O Q F D T T B N L Q M VOQFDTTBNLQM using modulo 26, where A 0 , B 1 , , Z 25 , A \rightarrow 0, B \rightarrow 1, \ldots , Z \rightarrow 25, and enter the result as a string of integers.

What does the deciphered message state?

Hill cipher


The answer is 701515247141183024.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 23, 2017

Note: det ( A ) = 11 \: \det(A) = 11 and gcd ( 11 , 26 ) = 1 \gcd(11,26) = 1 , so for each block X j X_{j} the system A X j = B j m o d 26 A X_{j} = B_{j} \bmod{26} has a unique solution, where ( 1 < = j < = 6 ) (1 <= j <= 6) .

Using six blocks for V V I X H U I E Y C R I VVIXHUIEYCRI we obtain:

21 14 21\: 14

16 5 16 \: 5

3 19 3 \: 19

19 1 19 \: 1

13 11 13 \: 11

16 12 16 \: 12

A X j = B j X j = A 1 B j A * X_{j} = B_{j} \implies X_{j} = A^{-1} * B_{j}

Using the A 1 : A^{-1} \textbf{:}

C = A I = [ 3 5 1 0 2 7 0 1 ] m o d 26 C = A|I = \left [\begin{array}{cc|cc} 3 & 5 & 1 & 0 \\ 2 & 7 & 0 & 1 \\ \ \end{array} \right] \bmod{26}

Using the row operations: 9 R o w 1 9 * Row_{1} and 24 R o w 1 + R o w 2 24 * Row_{1} + Row_{2} \implies

C = [ 1 19 9 0 0 21 8 1 ] m o d 26 C = \left [\begin{array}{cc|cc} 1 & 19 & 9 & 0 \\ 0 & 21 & 8 & 1 \\ \ \end{array} \right] \bmod{26}

Using the row operation: 5 R o w 2 5 * Row_{2} and 7 R o w 2 + R 1 7 * Row_{2} + R_{1} \implies

C = [ 1 0 3 9 0 1 14 5 ] m o d 26 C = \left [\begin{array}{cc|cc} 1 & 0 & 3 & 9\\ 0 & 1 & 14 & 5 \\ \ \end{array} \right] \bmod{26}

\implies

A 1 = [ 3 9 14 5 ] m o d 26 A^{-1} = \left [\begin{array}{cc|c} 3 & 9\\ 14 & 5 \\ \ \end{array} \right] \bmod{26}

Note: A A 1 = I A * A^{-1} = I

Deciphering the first block [ 21 14 ] : \left [\begin{array}{cc|c} 21 \\ 14 \\ \ \end{array} \right] \textbf{:}

X 1 = A 1 B 1 m o d 26 = [ 3 9 14 5 ] [ 21 14 ] m o d 26 = [ 7 0 ] m o d 26 X_{1} = A^{-1} * B_{1} \bmod{26} = \left [\begin{array}{cc|c} 3 & 9\\ 14 & 5 \\ \ \end{array} \right] * \left [\begin{array}{cc|c} 21 \\ 14 \\ \ \end{array} \right] \bmod{26} = \left [\begin{array}{cc|c} 7 \\ 0 \\ \ \end{array} \right] \bmod{26} :

Deciphering the second block [ 16 5 ] : \left [\begin{array}{cc|c} 16 \\ 5 \\ \ \end{array} \right] \textbf{:}

X 2 = A 1 B 2 m o d 26 = [ 3 9 14 5 ] [ 16 5 ] m o d 26 = [ 15 15 ] m o d 26 X_{2} = A^{-1} * B_{2} \bmod{26} = \left [\begin{array}{cc|c} 3 & 9\\ 14 & 5 \\ \ \end{array} \right] * \left [\begin{array}{cc|c} 16 \\ 5 \\ \ \end{array} \right] \bmod{26} = \left [\begin{array}{cc|c} 15 \\ 15 \\ \ \end{array} \right] \bmod{26}

Repeat the same procedure for the remaining four blocks.

Our deciphered blocks are:

7 0 7 \: 0

15 15 15 \: 15

24 7 24 \: 7

14 11 14 \: 11

8 3 8 \: 3

0 24 0 \: 24

Our plain text message is:

H A P P Y H O L I D A Y HAPPYHOLIDAY

As a string of integers we have: 701515247141183024 \boxed{701515247141183024} .

H A P P Y H O L I D A Y ! HAPPY \: HOLIDAY \: !

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...