A trigraph cipher is a cipher in which each three block of letters of plaintext is replaced by a block of three letters of ciphertext.
Suppose that the most common trigraph in English is T H E , A N D , and T H A . Using a Hill cipher system the three most common trigraphs in the ciphertext message are L M E , W R I , and Z Y C . We guess that L M E , W R I , and Z Y C correspond to the three most common trigraphs in the English text T H E , A N D , and T H A .
Let A → 0 , B → 1 , … , Z → 2 5 .
Each plaintext block P j was enciphered using a Hill trigraphic cipher described by A ∗ P j ≡ C j m o d 2 6 , where each C j is a ciphertext block and A = [ a i j ] 3 X 3 , .
Choose the matrix or matrices below that makes the above work.
( 1 ) : ⎣ ⎢ ⎢ ⎡ 2 1 2 5 1 3 2 3 3 3 1 0 7 ⎦ ⎥ ⎥ ⎤ m o d 2 6
( 2 ) : ⎣ ⎢ ⎢ ⎡ 1 6 5 2 3 1 1 1 3 1 0 7 ⎦ ⎥ ⎥ ⎤ m o d 2 6
( 3 ) : ⎣ ⎢ ⎢ ⎡ 1 6 6 2 5 1 2 3 3 2 3 7 ⎦ ⎥ ⎥ ⎤ m o d 2 6
(
4
)
:
⎣
⎢
⎢
⎡
1
8
6
2
3
3
2
1
3
2
3
7
⎦
⎥
⎥
⎤
m
o
d
2
6
In the solution, prior to verification, I show how each matrix was constructed.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Rocco Dalto Nice problem and thanks for sharing the matrix A construction. Since there is some freedom to pick column 2 of the matrix, this would seem to give a large number ( 2 6 3 > 1 7 , 0 0 0 ) of possibilities for it, limited only by things like det A = 0 and g cd ( det A , 2 6 ) = 1 . I suppose those possibilities are narrowed down by frequency analysis of other 3-letter blocks, correct?
Problem Loading...
Note Loading...
Set Loading...
You can verify that all 4 matrices will work.
Prior to verification, I show how each matrix was constructed.
To construct each matrix:
Let A = [ a i j ] 3 X 3 , .
Using A ∗ P j ≡ C j m o d 2 6 , , where ( 1 < = j < = 3 ) enciphering each plaintext block we obtain the three 3 X 3 systems of linear congruence's below:
1 9 ∗ a 1 1 + 7 ∗ a 1 2 + 4 ∗ a 1 3 = 1 1 m o d 2 6 1 3 ∗ a 1 2 + 3 ∗ a 1 3 = 2 2 m o d 2 6 1 9 ∗ a 1 1 + 7 ∗ a 1 2 = 2 5 m o d 2 6
1 9 ∗ a 2 1 + 7 ∗ a 2 2 + 4 ∗ a 2 3 = 1 2 m o d 2 6 1 3 ∗ a 2 2 + 3 ∗ a 2 3 = 1 7 m o d 2 6 1 9 ∗ a 2 1 + 7 ∗ a 2 2 = 2 4 m o d 2 6
\ 1 9 ∗ a 3 1 + 7 ∗ a 3 2 + 4 ∗ a 3 3 = 4 m o d 2 6 1 3 ∗ a 3 2 + 3 ∗ a 3 3 = 8 m o d 2 6 1 9 ∗ a 3 1 + 7 ∗ a 3 2 = 2 m o d 2 6
Setting up the augmented matrix B we obtain:
B = ⎣ ⎢ ⎢ ⎡ 1 9 0 1 9 7 1 3 7 4 3 0 1 1 2 2 2 5 1 2 1 7 2 4 4 8 2 ⎦ ⎥ ⎥ ⎤ m o d 2 6
R o w 2 ↔ R o w 3 ⟹
B = ⎣ ⎡ 1 9 1 9 0 7 7 1 3 4 0 3 1 1 2 5 2 2 1 2 2 4 1 7 4 2 8 ⎦ ⎤ m o d 2 6
1 1 ∗ R o w 1 ⟹
B = ⎣ ⎡ 1 1 9 0 2 5 7 1 3 1 8 0 3 1 7 2 5 2 2 2 2 4 1 7 1 8 2 8 ⎦ ⎤ m o d 2 6
7 ∗ R o w 1 + R o w 2 ⟹
B = ⎣ ⎡ 1 0 0 2 5 0 1 3 1 8 2 2 3 1 7 1 4 2 2 2 1 2 1 7 1 8 2 4 8 ⎦ ⎤ m o d 2 6
9 ∗ R o w 3 ⟹
B = ⎣ ⎡ 1 0 0 2 5 0 1 3 1 8 2 2 1 1 7 1 4 1 6 2 1 2 2 3 1 8 2 4 2 0 ⎦ ⎤ m o d 2 6
8 ∗ R o w 3 + R o w 1 ⟹
B = ⎣ ⎡ 1 0 0 2 5 0 1 3 0 2 2 1 1 5 1 4 1 6 4 1 2 2 3 2 2 2 4 2 0 ⎦ ⎤ m o d 2 6
4 ∗ R o w 3 + R o w 2 ⟹
B = ⎣ ⎡ 1 0 0 2 5 0 1 3 0 0 1 1 5 0 1 6 4 0 2 3 2 2 0 2 0 ⎦ ⎤ m o d 2 6
From the above matrix we obtain:
a 1 1 + 2 5 ∗ a 1 2 ≡ 1 5 m o d 2 6
a 2 1 + 2 5 ∗ a 2 2 ≡ 4 m o d 2 6
a 3 1 + 2 5 ∗ a 3 2 ≡ 2 2 m o d 2 6
Since a j 2 is an arbitrary variable let:
a 1 2 ≡ 1 3 m o d 2 6
a 2 2 ≡ 2 3 m o d 2 6
a 3 2 ≡ 3 m o d 2 6
⟹
a 1 1 ≡ 1 5 − 2 5 ∗ 1 3 m o d 2 6 ≡ − 3 1 0 m o d 2 6 ≡ − 2 4 m o d 2 6 ≡ 2 m o d 2 6
a 2 1 ≡ 1 m o d 2 6
a 3 1 ≡ 2 5 m o d 2 6
and since a 1 2 , a 2 2 , a n d a 3 2 are odd ⟹
1 3 + a 1 3 ≡ 1 6 m o d 2 6
1 3 + a 2 3 ≡ 2 3 m o d 2 6
1 3 + a 3 3 ≡ 2 0 m o d 2 6
⟹
a 1 3 ≡ 3 m o d 2 6
a 2 3 ≡ 1 0 m o d 2 6
a 3 3 ≡ 7 m o d 2 6
∴ for the first matrix we obtain:
A = ⎣ ⎢ ⎢ ⎡ 2 1 2 5 1 3 2 3 3 3 1 0 7 ⎦ ⎥ ⎥ ⎤ m o d 2 6
For the second matrix let:
a 1 2 ≡ 1 m o d 2 6
a 2 2 ≡ 1 m o d 2 6
a 3 2 ≡ 1 m o d 2 6
⟹
a 1 1 ≡ − 2 0 m o d 2 6 ≡ 1 6 m o d 2 3
a 2 1 ≡ 5 m o d 2 6
a 3 1 ≡ 2 3 m o d 2 6
and,
a 1 3 ≡ 3 m o d 2 6
a 2 3 ≡ 1 0 m o d 2 6
a 3 3 ≡ 7 m o d 2 6
∴ for the second matrix we obtain:
A = ⎣ ⎢ ⎢ ⎡ 1 6 5 2 3 1 1 1 3 1 0 7 ⎦ ⎥ ⎥ ⎤ m o d 2 6
For the third matrix let:
a 1 2 ≡ 1 m o d 2 6
a 2 2 ≡ 2 m o d 2 6
a 3 2 ≡ 3 m o d 2 6
⟹
a 1 1 ≡ 1 6 m o d 2 3
a 2 1 ≡ 6 m o d 2 6
a 3 1 ≡ 2 5 m o d 2 6
and,
a 1 3 ≡ 3 m o d 2 6
a 2 3 ≡ 2 3 m o d 2 6
a 3 3 ≡ 7 m o d 2 6
∴ for the third matrix we obtain:
A = ⎣ ⎢ ⎢ ⎡ 1 6 6 2 3 1 2 3 3 2 3 7 ⎦ ⎥ ⎥ ⎤ m o d 2 6
For the fourth matrix let:
a 1 2 ≡ 3 m o d 2 6
a 2 2 ≡ 2 m o d 2 6
a 3 2 ≡ 1 m o d 2 6
⟹
a 1 1 ≡ 1 8 m o d 2 3
a 2 1 ≡ 6 m o d 2 6
a 3 1 ≡ 2 3 m o d 2 6
and,
a 1 3 ≡ 3 m o d 2 6
a 2 3 ≡ 2 3 m o d 2 6
a 3 3 ≡ 7 m o d 2 6
∴ for the fourth matrix we obtain:
A = ⎣ ⎢ ⎢ ⎡ 1 8 6 2 3 3 2 1 3 2 3 7 ⎦ ⎥ ⎥ ⎤ m o d 2 6
Note for all four cases ( det ( A ) , 2 6 ) = 1 .
For the first matrix we obtain:
⎣ ⎢ ⎢ ⎡ 2 1 2 5 1 3 2 3 3 3 1 0 7 ⎦ ⎥ ⎥ ⎤ ∗ ⎣ ⎢ ⎢ ⎡ 1 9 7 4 0 1 3 3 1 9 7 0 ⎦ ⎥ ⎥ ⎤ ≡ ⎣ ⎢ ⎢ ⎡ 1 1 1 2 4 2 2 1 7 8 2 5 2 4 2 ⎦ ⎥ ⎥ ⎤ m o d 2 6
Using the blocks ⎣ ⎢ ⎢ ⎡ 1 1 1 2 4 ⎦ ⎥ ⎥ ⎤ , ⎣ ⎢ ⎢ ⎡ 2 2 1 7 8 ⎦ ⎥ ⎥ ⎤ , and, ⎣ ⎢ ⎢ ⎡ 2 5 2 4 2 ⎦ ⎥ ⎥ ⎤ we obtain the ciphertext:
L M E , W R I , and Z Y C .
The user can verify the enciphered text using the other three matrices.
Answer: ( 1 ) , ( 2 ) , ( 3 ) , and ( 4 ) .