Hinged Rod!

A rod of length l l is hinged at one end and kept horizontal and is allowed to fall. What is the v e l o c i t y velocity of the other end of the rod ?

g i s a c c e l e r a t i o n d u e t o g r a v i t y g~is~acceleration~due~to~gravity

g l gl 3 g l \sqrt{3gl} 2 g l \sqrt{2gl} g l \frac{g}{l} g l g\sqrt{l} g l 2 gl^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Neeraj Snappy
Nov 22, 2015

A lengthy approach, but different from that of energy.

τ e x t = I α I α = m g ( cos θ ) l 2 [ I t ( m g ( cos θ ) ) i s t h e o n l y c o m p o n e n t o f g r a v i t a t i o n a l f o r c e t h a t c a u s e s r o t a t i o n i n t h e r o d ] α = m g I ( cos θ ) l 2 α = m g m l 2 3 ( cos θ ) l 2 [ r o t a t i o n a l i n e r t i a ( I ) f o r t h e r o d , w i t h r o t a t i o n a l a x i s t h r o u g h e n d , i s m l 2 3 ] S i m p l i f y i n g w e g e t : α = 3 g 2 l ( cos θ ) ( 1 ) t h e a n g u l a r a c c e l e r a t i o n o f t h e r o d v a r i e s w i t h i t s a n g u l a r p o s i t i o n ( θ ) , r o t a t i o n a l k i n e m a t i c e x p r e s s i o n s a r e o f n o u s e . S o , α = d ω d t = d ω d θ . d θ d t = d ω d θ . ω [ U s i n g c h a i n r u l e ] α . d θ = ω . d ω θ i θ f 3 g 2 L ( cos θ ) d θ = ω i ω f ω d ω S o l v i n g t h e i n t e g r a l w e l l g e t : ω f = ω i 2 + 3 g l ( sin ( θ f ) sin ( θ i ) ) ( 2 ) I n i t i a l a n g u l a r p o s i t i o n , θ i = 0 f r o m X a x i s a n d f i n a l a n g u l a r p o s i t i o n , θ f = π 2 I n i t i a l a n g u l a r s p e e d , ω i = 0 a n d f i n a l a n g u l a r s p e e d , ω f i s r e q u i r e d . S u b s t i t u t i n g t h e s e i n ( 2 ) w e g e t : ω f = 3 g l ( 3 ) W e k n o w v = r ω , ω = ω f a n d r = l ( v e l o c i t y a t t h e e n d o f t h e r o d i s a s k e d ) v = l 3 g l = l 2 3 g l = 3 g l v = 3 g l \sum { { \tau }_{ ext } } =I\alpha \\ I\alpha =mg(\cos { \theta } )\frac { l }{ 2 } \qquad [\because \quad It\quad (mg(\cos { \theta } ))\quad is\quad the\quad only\quad component\quad of\quad gravitational\quad force\quad that\quad causes\quad rotation\quad in\quad the\quad rod]\\ \alpha =\frac { mg }{ I } (\cos { \theta } )\frac { l }{ 2 } \\ \alpha =\frac { mg }{ \frac { m{ l }^{ 2 } }{ 3 } } (\cos { \theta } )\frac { l }{ 2 } \quad \qquad [\because \quad rotational\quad inertia\quad (I)\quad for\quad the\quad rod,\quad with\quad rotational\quad axis\quad through\quad end,\quad is\quad \frac { m{ l }^{ 2 } }{ 3 } ]\\ \\ Simplifying\quad we\quad get:\\ \\ \alpha =\frac { 3g }{ 2l } (\cos { \theta } )\qquad \qquad \qquad \qquad \qquad \qquad \qquad (1)\\ \\ \because \quad the\quad angular\quad acceleration\quad of\quad the\quad rod\quad varies\quad with\quad its\quad angular\quad position\quad (\theta ),\\ rotational\quad kinematic\quad expressions\quad are\quad of\quad no\quad use.\\ So,\\ \\ \alpha =\frac { d\omega }{ dt } =\frac { d\omega }{ d\theta } .\frac { d\theta }{ dt } =\frac { d\omega }{ d\theta } .\omega \qquad \qquad [Using\quad chain\quad rule]\\ \alpha .d\theta \quad =\quad \omega .d\omega \\ \int _{ { \theta }_{ i } }^{ { \theta }_{ f } }{ \frac { 3g }{ 2L } (\cos { \theta } )d\theta } =\int _{ { \omega }_{ i } }^{ { \omega }_{ f } }{ \omega \quad d\omega } \\ \\ Solving\quad the\quad integral\quad we'll\quad get:\\ \\ { \omega }_{ f }=\sqrt { { { \omega }_{ i }^{ 2 } }+\frac { 3g }{ l } (\sin { ({ \theta }_{ f }) } -\sin { { (\theta }_{ i }) } ) } \qquad \qquad (2)\\ \\ Initial\quad angular\quad position,\quad { \theta }_{ i }=0\quad from\quad X-axis\quad and\quad final\quad angular\quad position,\quad { \theta }_{ f }=\frac { \pi }{ 2 } \\ Initial\quad angular\quad speed,\quad { \omega }_{ i }=0\quad and\quad final\quad angular\quad speed,\quad { \omega }_{ f }\quad is\quad required.\\ Substituting\quad these\quad in\quad (2)\quad we\quad get:\\ \\ { \omega }_{ f }=\sqrt { \frac { 3g }{ l } } \qquad \qquad \qquad \qquad \qquad \qquad \qquad (3)\\ \\ We\quad know\quad v=r\omega ,\\ \omega ={ \omega }_{ f }\quad and\quad r=l\quad (\because \quad velocity\quad at\quad the\quad end\quad of\quad the\quad rod\quad is\quad asked)\\ \\ v=l\sqrt { \frac { 3g }{ l } } =\sqrt { { l }^{ 2 }\frac { 3g }{ l } } =\sqrt { 3gl } \\ \therefore \quad \boxed{v=\sqrt { 3gl } }

Gagan Raj
Apr 5, 2015

As the mass is concentrated at the center of the rod.....therefore.....

Thus , the velocity at the other end of the rod is ...........

This is my solution.....if anyone finds any error please feel free to correct me !!!!!

Enjoy And Learn !!!!!

I did it the same way...But can you please show, to do it if we take the time period of the oscillation of this rod, and use it to find the velocity?

A Former Brilliant Member - 6 years, 2 months ago

Log in to reply

Well it is very easy

We Know That

v e l o c i t y velocity = = d i s p l a c e m e n t t i m e \frac{displacement}{time}

v v = 2 π l T \frac{2\pi{l}}{T}

But , T = 2 π ω T=\frac{2\pi}{\omega} ( T i m e P e r i o d ) (Time~Period)

Substituting in the above equation , we get

v v = = l ω l\omega

From here onwards its the same c e n t r e o f m a s s m e t h o d centre~of~mass~method which i have followed. We can substitute the required variables to get the final answer as expected in the options.

If you want a pure SHMish proof then i am sorry.....but i myself have a slight doubt in how to do so.

Note - Well using the knowledge and logic of physics we can derive many formulae for velocity.....But the given options provides us a pathway to obtain a single formula as the desired answer

Gagan Raj - 6 years, 2 months ago

Log in to reply

@Gagan Raj Thanks...i myself was doubtful if it would follow SHM coz the oscillations are not small enough. Anyways, Thank you!:)

A Former Brilliant Member - 6 years, 2 months ago

1/2 mg??? How?

Md Zuhair - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...