Hint : Expand.! :P

Probability Level pending

If n C r + 3 n C r 1 + 3 n C r 2 + n C r 3 = n + k C r ^{ n }{ C }_{ r }+3^{ n }{ C }_{ r-1 }+3^{ n }{ C }_{ r-2 }+^{ n }{ C }_{ r-3 }=^{ n+k }{ C }_{ r } for every n , r ϵ N n,r\epsilon N r ϵ [ 3 , n + 3 ] r\epsilon [3,n+3] . Find k 4 1 { k }^{ 4 }-1 .

Try more problems here .


The answer is 80.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Dec 21, 2014

n C r + n C r + 1 = n + 1 C r + 1 \boxed{^{ n }{ C }_{ r } + ^{ n }{ C }_{ r + 1 } = ~ ^{ n + 1}{ C }_{ r + 1}}

= n C r + n C r 1 + 2 ( n C r 1 + n C r 2 ) + n C r 2 + n C r 3 = ~ ^{ n }{ C }_{ r } + ^{ n }{ C }_{ r - 1 } + 2( ^{ n }{ C }_{ r - 1} + ^{ n }{ C }_{ r - 2} ) + ^{ n }{ C }_{ r - 2} + ^{ n }{ C }_{ r - 3}

= n + 1 C r + 2 ( n + 1 C r 1 ) + n + 1 C r 2 = ~^{ n + 1 }{ C }_{ r} + 2( ^{ n + 1 }{ C }_{ r - 1}) + ^{ n + 1}{ C }_{ r - 2}

= n + 1 C r + n + 1 C r 1 + n + 1 C r 1 + n + 1 C r 2 = ~ ^{ n + 1 }{ C }_{ r} + ^{ n + 1 }{ C }_{ r - 1} + ^{ n + 1 }{ C }_{ r - 1} + ^{ n + 1 }{ C }_{ r - 2}

= n + 2 C r + n + 2 C r 1 = ~ ^{ n + 2 }{ C }_{ r} + ^{ n + 2 }{ C }_{ r - 1}

= n + 3 C r = ~ ^{ n + 3 }{ C }_{ r}

Exactly.! Elegant and Compact.

Abhishek Sharma - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...