Hint: Find substitution

Algebra Level 4

24 + x 3 + 12 x 6 \large \sqrt[3]{24+x} + \sqrt{12-x} \le 6

Find the number of integers satisfying the inequality above.


74 73 Infinitely many 75

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 17, 2017

Similar solution with Anoop Babu 's

24 + x 3 + 12 x 6 Let u = 12 x , u 2 = 12 x , x = 12 u 2 24 + 12 u 2 3 + u 6 36 u 2 3 + u 6 ( 6 u ) ( 6 + u ) 3 + u 6 ( 6 u ) ( 6 + u ) 3 6 u Cubing both sides ( 6 u ) ( 6 + u ) ( 6 u ) 3 ( 6 u ) 3 ( 6 u ) ( 6 + u ) 0 ( 6 u ) [ ( 6 u ) 2 6 u ] 0 ( 6 u ) [ u 2 12 u + 36 6 u ] 0 ( 6 u ) [ u 2 13 u + 30 ] 0 ( 6 u ) ( u 3 ) ( u 10 ) 0 Changing sign and hence inequality ( u 3 ) ( u 6 ) ( u 10 ) 0 \begin{aligned} \sqrt[3]{24+x}+\sqrt{12-x} & \le 6 & \small \color{#3D99F6} \text{Let } u=\sqrt{12-x}, \ u^2 = 12 - x, \ x = 12 - u^2 \\ \sqrt[3]{24+12-u^2}+u & \le 6 \\ \sqrt[3]{36-u^2}+u & \le 6 \\ \sqrt[3]{(6-u)(6+u)}+u & \le 6 \\ \sqrt[3]{(6-u)(6+u)} & \le 6 - u & \small \color{#3D99F6} \text{Cubing both sides} \\ (6-u)(6+u) & \le (6 - u)^3 \\ (6 - u)^3 - (6-u)(6+u) & \ge 0 \\ (6-u)[(6 - u)^2 - 6-u] & \ge 0 \\ (6-u)[u^2-12u+36 - 6-u] & \ge 0 \\ (6-u)[u^2-13u+30] & \ge 0 \\ {\color{#3D99F6}(6-u)}(u-3)(u-10) & \ {\color{#3D99F6}\ge} \ 0 & \small \color{#3D99F6} \text{Changing sign and hence inequality} \\ (u-3){\color{#D61F06}(u-6)}(u-10) & \ {\color{#D61F06}\le} \ 0 \end{aligned}

{ u 3 12 x 3 3 x 12 10 integral solutions 6 u 10 6 12 x 10 24 x 88 65 integral solutions \implies \begin{cases} u \le 3 & \implies \sqrt{12-x} \le 3 &\implies 3 \le x \le 12 & \small \implies 10 \text{ integral solutions} \\ 6 \le u \le 10 & \implies 6 \le \sqrt{12-x} \le 10 &\implies -24 \le x \le -88 & \small \implies 65 \text{ integral solutions} \end{cases}

Therefore, a total of 75 \boxed{75} integral solutions.

Sid Patak
Apr 17, 2017

Hey Anoop how can I contact you for the JEE thing? Is it possible for you to comment down below your email?

Sergi Mlg Sabat - 4 years, 1 month ago

Hi, Anoop Can you please add me in the group for jee adv mathematics? I will send you my mobile no. on the email address you mentioned once you affirm by replying .

Priyanshu Gupta - 4 years, 1 month ago

You can add me in your group.my email is [email protected]

Deepansh Jindal - 3 years, 2 months ago

Log in to reply

Ok my mail is [email protected] ..... I want to participate in the group....i can give u my number in mail...

rajdeep brahma - 3 years, 2 months ago
Rab Gani
Apr 17, 2017

Let u = ∛(24+x) , then -x = 24-u^3. The inequality becomes √(36-u^3 ) ≤ 6 – u. Square both sides, then we get 0 ≤ u^3 + u^2 – 12u = u(u+4)(u – 3), then -4≤u≤0, or u≥3, are the solutions.Transforming back to x variable, we have -64≤24+x≤0, or 24+x≥27. finally we have the solutions -88≤ x≤ - 24, or 3≤x≤12. So the number of integers solutions is 65+10 = 75 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...