Hit the bear with Maximum Probability

A bear hides either in Bush A A with a probability of 9 25 \frac{9}{25} or behind Bush B B with a probability of 16 25 \frac{16}{25} . A hunter has 10 bullets each of which can be fired either at bush A A or B B . Hunter hits each target independently with an accuracy of 0.25 0.25 . How many bullets can be fired at Bush A A to hit the bear with Maximum Probability?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let T T denotes the event that the bear is Hit when x x bullets are fired at bush A A .

Let E 1 E_{1} , E 2 E_{2} denotes the event as P ( E 1 ) = 9 25 P(E_{1})=\frac{9}{25} and P ( E 2 ) = 16 25 P(E_{2})=\frac{16}{25}

So P ( T E 1 ) = 1 ( 3 4 ) x P\left( \frac { T }{ { { E }_{ 1 } } } \right) =1-{ \left( \frac { 3 }{ 4 } \right) }^{ x }

and P ( T E 2 ) = 1 ( 3 4 ) ( 10 x ) P\left( \frac { T }{ { { E }_{ 2 } } } \right) =1-{ \left( \frac { 3 }{ 4 } \right) }^{ \left( 10-x \right) }

P ( T ) = 9 25 ( 1 ( 3 4 ) x ) + 16 25 ( 1 ( 3 4 ) ( 10 x ) ) P\left( T \right) =\frac { 9 }{ 25 } \left( 1-{ \left( \frac { 3 }{ 4 } \right) }^{ x } \right) +\frac { 16 }{ 25 } \left( 1-{ \left( \frac { 3 }{ 4 } \right) }^{ \left( 10-x \right) } \right)

d P ( T ) d x = { 9 25 ( 3 4 ) x 16 25 ( 3 4 ) ( 10 x ) } ln ( 4 3 ) \frac { dP\left( T \right) }{ dx } =\left\{ \frac { 9 }{ 25 } { \left( \frac { 3 }{ 4 } \right) }^{ x }-\frac { 16 }{ 25 } { \left( \frac { 3 }{ 4 } \right) }^{ \left( 10-x \right) } \right\} \ln { \left( \frac { 4 }{ 3 } \right) }

For Maxima or Minima d P ( T ) d x = 0 \frac { dP\left( T \right) }{ dx } =0

9 25 ( 3 4 ) x = 16 25 ( 3 4 ) ( 10 x ) \Rightarrow \quad \frac { 9 }{ 25 } { \left( \frac { 3 }{ 4 } \right) }^{ x }=\frac { 16 }{ 25 } { \left( \frac { 3 }{ 4 } \right) }^{ \left( 10-x \right) } 9 16 ( 3 4 ) x = ( 3 4 ) ( 10 x ) \Rightarrow \quad \frac { 9 }{ 16 } { \left( \frac { 3 }{ 4 } \right) }^{ x }={ \left( \frac { 3 }{ 4 } \right) }^{ \left( 10-x \right) } ( 3 4 ) ( x + 2 ) = ( 3 4 ) ( 10 x ) \Rightarrow \quad { \left( \frac { 3 }{ 4 } \right) }^{ \left( x+2 \right) }={ \left( \frac { 3 }{ 4 } \right) }^{ \left( 10-x \right) } x + 2 = 10 x \Rightarrow \quad x+2\quad =10-x x = 4 \Rightarrow \quad x=4 also at x = 4 x=4 d 2 P ( T ) d x 2 < 0 \frac { { d }^{ 2 }P\left( T \right) }{ d{ x }^{ 2 } } <0 So P ( T ) P\left( T \right) is Max at x = 4 \boxed{x=4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...