Hmm 5, 12, 13, this seems familiar

Algebra Level 5

Find the sum of x x of all possible values of triples of positive real values ( x , y , z ) (x,y,z) such that:

  1. 5 ( x + 1 x ) = 12 ( y + 1 y ) = 13 ( z + 1 z ) 5( x+ \frac{1}{x}) = 12(y + \frac{1}{y}) = 13(z+ \frac{1}{z})

  2. x y + y z + z x = 1 xy+yz+zx = 1


The answer is 0.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Trần Phi
Mar 30, 2014

t a n A 2 t a n B 2 + t a n B 2 t a n C 2 + t a n C 2 t a n A 2 = 1 t a n A 2 = x ; t a n B 2 = y ; t a n C 2 = z ; w i t h A , B , C i s a n g l e i n t r i a n g l e . 5 ( t a n A 2 + c o t A 2 ) = 12 ( t a n B 2 + c o t B 2 ) = 13 ( t a n C 2 + c o t C 2 ) 10 s i n A = 24 s i n B = 26 s i n C 10 2 + 24 2 = 26 2 C = π 2 t a n A = 10 24 t a n A 2 = 0.2 tan\frac { A }{ 2 } tan\frac { B }{ 2 } \quad +\quad tan\frac { B }{ 2 } tan\frac { C }{ 2 } \quad +\quad tan\frac { C }{ 2 } tan\frac { A }{ 2 } \quad =\quad 1\\ tan\frac { A }{ 2 } \quad =\quad x\quad ;\quad tan\frac { B }{ 2 } \quad =\quad y\quad ;\quad tan\frac { C }{ 2 } \quad =\quad z\quad ;\\ with\quad A,B,C\quad is\quad angle\quad in\quad triangle.\\ 5(tan\frac { A }{ 2 } \quad +\quad cot\frac { A }{ 2 } )\quad =\quad 12(tan\frac { B }{ 2 } \quad +\quad cot\frac { B }{ 2 } )\quad =13(tan\frac { C }{ 2 } \quad +\quad cot\frac { C }{ 2 } )\\ \Longleftrightarrow \frac { 10 }{ sinA } =\frac { 24 }{ sinB } =\frac { 26 }{ sinC } \\ { 10 }^{ 2 }\quad +\quad { 24 }^{ 2 }\quad =\quad { 26 }^{ 2 }\quad \Longrightarrow \quad C\quad =\quad \frac { \pi }{ 2 } \quad \\ \Longrightarrow tanA\quad =\quad \frac { 10 }{ 24 } \quad \\ \Longrightarrow tan\frac { A }{ 2 } \quad =\quad \boxed{0.2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...