No, Not Possible

Calculus Level 4

m m and n n are constants. y y is defined in terms of x x such that

( x + y ) m + n = x m y n . \large (x+y)^{m+n}=x^my^n.

Find d y d x \dfrac{dy}{dx} .

m y n x \dfrac{my}{nx} n y m x \dfrac{ny}{mx} y x \dfrac yx m n \dfrac mn x y \dfrac xy None of these choices n m \dfrac nm

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sravanth C.
May 28, 2016

Relevant wiki: Implicit Differentiation - Polynomials

Applying log on both sides of the equation and then finding the derivative is easier, so we get

d d x log ( x m y n ) = d d x log ( x + y ) m + n d d x m log x + n log y = d d x ( m + n ) log ( x + y ) m x + n y d y d x = ( m + n ) ( x + y ) [ 1 + d y d x ] \begin{aligned} \dfrac{d}{dx}\log (x^my^n)&=\dfrac{d}{dx}\log (x+y)^{m+n}\\ \dfrac{d}{dx}m\log x + n\log y&=\dfrac{d}{dx}(m+n)\log (x+y)\\ \dfrac mx + \dfrac ny\dfrac{dy}{dx} &=\dfrac{(m+n)}{(x+y)}\left[1+\dfrac{dy}{dx}\right]\\ \end{aligned}

Now bringing the dy/dx terms to one side and solving the expression we arrive at

d y d x [ n y ( m + n ) ( x + y ) ] = ( m + n ) ( x + y ) m x d y d x [ n x m y y ( x + y ) ] = n x m y x ( x + y ) d y d x = n x m y x ( x + y ) × y ( x + y ) n x m y d y d x = y x \begin{aligned} \dfrac{dy}{dx}\left[\dfrac ny-\dfrac{(m+n)}{(x+y)}\right]&=\dfrac{(m+n)}{(x+y)}-\dfrac mx\\ \dfrac{dy}{dx}\left[\dfrac{nx-my}{y(x+y)}\right]&=\dfrac{nx-my}{x(x+y)}\\ \dfrac{dy}{dx}&=\dfrac{nx-my}{x(x+y)}\times\dfrac{y(x+y)}{nx-my}\\ \dfrac{dy}{dx}&=\boxed{\dfrac yx} \end{aligned}

Moderator note:

What happens when n x m y = 0 nx - my = 0 ?

Note the proper way of phrasing the question.

Calvin Lin Staff - 5 years ago

After taking log just apply df/dx=-((del f /del x)/(del f/del y)) where f is function of x, y and del stands for partial differentiation...... This makes the solution super easy

Samarth Agarwal - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...