and are constants. is defined in terms of such that
Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Implicit Differentiation - Polynomials
Applying log on both sides of the equation and then finding the derivative is easier, so we get
d x d lo g ( x m y n ) d x d m lo g x + n lo g y x m + y n d x d y = d x d lo g ( x + y ) m + n = d x d ( m + n ) lo g ( x + y ) = ( x + y ) ( m + n ) [ 1 + d x d y ]
Now bringing the dy/dx terms to one side and solving the expression we arrive at
d x d y [ y n − ( x + y ) ( m + n ) ] d x d y [ y ( x + y ) n x − m y ] d x d y d x d y = ( x + y ) ( m + n ) − x m = x ( x + y ) n x − m y = x ( x + y ) n x − m y × n x − m y y ( x + y ) = x y