Do you know the function?

Calculus Level 4

sinh ( 0 π / 4 d x cos x ) = ? \large \sinh \left(\int_0^{\pi /4} \dfrac {dx}{\cos x} \right) = \, ?

0 1 2 \frac{1}{\sqrt{2}} None of these 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 13, 2016

I = 0 π 4 d x cos x = 0 π 4 sec x d x = 0 π 4 sec x ( tan x + sec x ) tan x + sec x d x = 0 π 4 sec x tan x + sec 2 x tan x + sec x d x Let u = tan x + sec x d u = ( sec 2 x + tan x sec x ) d x = 1 1 + 2 d u u = ln u 1 1 + 2 = ln ( 1 + 2 ) \begin{aligned} I & = \int_0^\frac \pi 4 \frac {dx}{\cos x} \\ & = \int_0^\frac \pi 4 \sec x \ dx \\ & = \int_0^\frac \pi 4 \frac {\sec x (\tan x + \sec x)}{\tan x + \sec x} \ dx \\ & = \int_0^\frac \pi 4 \frac {\sec x \tan x + \sec^2 x}{\color{#3D99F6}{\tan x + \sec x}} \ dx & \small \color{#3D99F6}{\text{Let }u=\tan x + \sec x \implies du = (\sec^2 x + \tan x \sec x) \ dx} \\ & = \int_1^{1+\sqrt 2} \frac {du}u \\ & = \ln u \ \big|_1^{1+\sqrt 2} \\ & = \ln (1+\sqrt 2) \end{aligned}

sinh ( 0 π 4 d x cos x ) = sinh ( ln ( 1 + 2 ) ) = 1 2 ( e ln ( 1 + 2 ) e ln ( 1 + 2 ) ) = 1 2 ( 1 + 2 1 1 + 2 ) = 1 2 ( 1 + 2 2 + 1 ) = 1 \begin{aligned} \implies \sinh \left( \int_0^\frac \pi 4 \frac {dx}{\cos x} \right) & = \sinh (\ln (1+\sqrt 2)) \\ & = \frac 12 \left( e^{\ln(1+\sqrt 2)} - e^{-\ln (1+\sqrt 2)} \right) \\ & = \frac 12 \left( 1+\sqrt 2 - \frac 1{1+\sqrt 2} \right) \\ & = \frac 12 \left( 1+\sqrt 2 - \sqrt 2 + 1 \right) \\ & = \boxed{1} \end{aligned}

yep well done. In short it is the inverse gudermennian function

Aditya Narayan Sharma - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...