Hmm.. It looks complex.

Calculus Level 5

Determine ( e I ) \Re\left(e ^I\right) , where I = C sinh ( 2 z ) z 4 d z \displaystyle I = \oint _{ C } \dfrac {\sinh(2z)}{z^4} dz , and C C is a unit circle around the origin.

Note: ( ) \Re (\cdot) denotes the real part of a complex number .


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu C
Apr 18, 2015

U s i n g a c o r o l l a r y o f C a u c h y s i n t e g r a l f o r m u l a : f ( n ) ( a ) = n ! 2 π i C f ( z ) ( z a ) n + 1 d z f o r a n a n a l y t i c f i n a c l o s e d c o n t o u r C , a n d s e t t i n g n = 3 ; a = 0 a n d f ( z ) = s i n h ( 2 z ) , w e h a v e , f ( z ) = 8 c o s h ( 2 × 0 ) × 2 π i 3 ! = I I = i 8 π / 3 e x p ( I ) = 1 / 2 + i 3 / 2 R e ( e I ) = 0.5 Using\quad a\quad corollary\quad of\quad Cauchy's\quad integral\quad formula:\\ { f }^{ (n) }(a)=\frac { n! }{ 2\pi i } \oint _{ C }{ \frac { f(z) }{ (z-a)^{ n+1 } } dz } \quad for\quad an\quad analytic\quad f\quad in\quad a\\ closed\quad contour\quad C,\quad and\quad setting\quad n=3;\quad a=0\quad \\ and\quad f(z)=sinh(2z),\quad we\quad have,\quad \\ f^{ ''' }(z)=8cosh(2\times 0)\times \frac { 2\pi i }{ 3! } =\quad I\\ \Rightarrow \quad I\quad =\quad i8\pi /3\quad \Rightarrow \quad exp(I)=-1/2+i\sqrt { 3 } /2\\ \Rightarrow \quad Re(e^{ I })\quad =\quad \boxed { -0.5 }

Yep. Did the same! Easy peasy!

Kartik Sharma - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...