Complex Enough Yet?

Algebra Level 2

x + 1 x = 3 , x 200 + 1 x 200 = ? \large x + \frac 1 x = \sqrt 3\ , \ \ \ \ \ \ \ x^{200} + \frac {1}{x^{200}} = \ ?


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Mar 25, 2015

Same method with Ruslan Abdulgani . I am putting it in proper LaTex.

x + 1 x = 3 x 2 3 x + 1 = 0 x = 3 ± 3 4 2 = 3 2 ± 1 2 i = cos π 6 ± sin π 6 i = e ± π 6 i x+\dfrac{1}{x} = \sqrt{3}\quad \Rightarrow x^2-\sqrt{3}x +1 = 0 \\ \Rightarrow x = \dfrac {\sqrt{3}\pm\sqrt{3-4}}{2} = \frac{\sqrt3}{2} \pm \frac{1}{2}i = \cos {\frac{\pi}{6}} \pm \sin{\frac{\pi}{6}}i = e^{\pm \frac{\pi}{6}i}

x 200 + 1 x 200 = e 200 π 6 i + e 200 π 6 i = e 4 π 3 i + e 4 π 3 i = 1 2 + 3 2 i 1 2 3 2 i = 1 \begin{aligned} \Rightarrow x^{200}+\dfrac{1}{x^{200}} & = e^{\frac{200\pi}{6}i}+e^{-\frac{200\pi}{6}i} \\ & = e^{\frac{4\pi}{3}i}+e^{-\frac{4\pi}{3}i} \\ & = -\frac{1}{2} + \frac{\sqrt3}{2}i -\frac{1}{2} - \frac{\sqrt3}{2}i \\ & = \boxed{-1} \end{aligned}

Another way to solve this is using Newton's Sums method. We know that:

α + β = 3 α β = 1 \alpha + \beta = \sqrt{3}\quad \Rightarrow \alpha \beta = 1

α 2 + β 2 = ( α + β ) 2 2 α β = 3 2 = 1 \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha \beta = 3 - 2 = 1

For n > 2 α n + β n = ( α + β ) ( α n 1 + β n 1 ) α β ( α n 2 + β n 2 ) = 3 ( α n 1 + β n 1 ) ( α n 2 + β n 2 ) \begin{aligned} n > 2\quad \Rightarrow \alpha^n + \beta^n & = (\alpha + \beta)(\alpha^{n-1} + \beta^{n-1}) - \alpha \beta (\alpha^{n-2} + \beta^{n-2} ) \\ & = \sqrt{3}(\alpha^{n-1} + \beta^{n-1}) - (\alpha^{n-2} + \beta^{n-2} ) \end{aligned}

Using an Excel spreadsheet, we can find out the values of α n 2 + β n 2 \alpha^{n-2} + \beta^{n-2} see below:

It is noted that the values of α n + β n \alpha^{n} + \beta^{n} repeat in a cycle of 12 12 . For 200 mod 12 = 8 200 \text{ mod } 12 = 8 we have α 200 + β 200 = α 8 + β 8 = 1 \alpha^{200} + \beta^{200} = \alpha^8 + \beta^8 = \boxed{-1}

It can also be solved using De morvies theorem

Rajdeep Dhingra - 6 years, 2 months ago

Log in to reply

The first solution is using De Moivre's theorem, I believe.

Hrishikesh Kulkarni - 6 years, 2 months ago

Log in to reply

No, It is using Euler's Formula. :)

Rajdeep Dhingra - 6 years, 2 months ago

yes i found it

Snehashis Mukherjee - 5 years, 2 months ago
Ruslan Abdulgani
Mar 25, 2015

x 2 3 x + 1 = 0 x = 3 ± i 2 = e i π 6 x^2 - \sqrt 3 x + 1 = 0 \\ \Rightarrow x= \dfrac{\sqrt 3 \pm i}{2}=e^{\frac{i \pi}{6}} .

So x 200 + 1 x 200 = e i 100 π 3 + e i 100 π 3 = 1. x^{200} + \dfrac{1}{x^{200}} = e^{\frac{i100 \pi}{3}}+e^{\frac{-i100 \pi}{3}}=-1.\square

Nice ,short, intelligent method.

Niranjan Khanderia - 5 years, 12 months ago
Arturo Presa
Apr 11, 2015

Let's us define a sequence s n = x n + ( 1 / x ) n s_{n}=x^n+(1/x)^n where s 0 = 2 s_{0}=2 and s 1 = x + 1 / x = 3 s_{1}=x+1/x =\sqrt{3} . It is easy to prove that that sequence satisfies the following recursion s n + 1 = 3 s n s n 1 s_{n+1}=\sqrt{3} s_{n} -s_{n-1} and then by mathematical induction one can prove that s n = 2 cos ( n π / 6 ) s_{n} =2 \cos( n*\pi/6) . Therefore s 200 = 2 cos ( 200 π / 6 ) = 2 cos ( 32 π + 4 π / 3 ) = 2 cos ( 4 π / 3 ) = 2 ( 1 / 2 ) = 1 s_{200}=2 \cos(200*\pi/6)= 2 \cos(32\pi+4\pi/3)=2 \cos(4\pi/3)=2(-1/2)=-1 .

Out of the box method. Congrats.

Niranjan Khanderia - 5 years, 12 months ago

Log in to reply

how do I get to dat language?

Am Kemplin - 2 weeks, 4 days ago

Just to show another approach:

We use the following identities, remembering that x n 1 x n = 1 x^n*\dfrac 1 {x^n}=1 .

If x n + 1 x n = y x 2 n + 1 x 2 n = y 2 2 , ( 1 ) x 3 n + 1 x 3 n = y 3 3 y . ( 2 x a + 1 x a } { x b + 1 x b } = x a + b + 1 x a + b + x a b + 1 x a b , ( 3 ) x + 1 x = 3 . x 2 + 1 x 2 = 1 u s i n g ( 1 ) ( 4 ) x 3 + 1 x 3 = 0 u s i n g ( 2 ) ( 5 ) x 5 + 1 x 5 = 3 f r o m ( 4 ) ( 5 ) u s i n g ( 3 ) ( 6 ) x 10 + 1 x 10 = 1 f r o m ( 6 ) u s i n g ( 1 ) ( 7 ) x 20 + 1 x 20 = 1 f r o m ( 7 ) u s i n g ( 1 ) ( 8 ) x 40 + 1 x 40 = 1 f r o m ( 8 ) u s i n g ( 1 ) ( 9 ) x 80 + 1 x 80 = 1 f r o m ( 9 ) u s i n g ( 1 ) ( 10 ) x 120 + 1 x 120 = 2 f r o m ( 9 ) ( 10 ) u s i n g ( 3 ) ( 11 ) x 160 + 1 x 160 = 1 f r o m ( 11 ) u s i n g ( 1 ) ( 12 ) x 200 + 1 x 200 = 1 f r o m ( 9 ) ( 12 ) u s i n g ( 3 ) x^n+\dfrac 1 {x^n}=y \\ x^{2n}+\dfrac 1 {x^{2n}} =y^2-2, \qquad (1) \\ x^{3n}+\dfrac 1 {x^{3n}} =y^3-3y. \qquad (2 \\{x^a+\dfrac 1 {x^a}\}*\{x^b+\dfrac 1 {x^b}\}\\ = x^{a+b}+\dfrac 1 {x^{a+b}}+x^{a-b}+\dfrac 1 {x^{a-b}}, \qquad (3)}\\ x+\dfrac 1 {x}=\sqrt 3. \\ x^2+\dfrac 1 {x^2}=1 using \ (1) \qquad (4) \\ x^3+\dfrac 1 {x^3}= 0 \ using \ (2) \qquad (5) \\\displaystyle x^5+\dfrac 1 {x^5}=-\sqrt 3 ~~from~(4)*(5)~~using~(3) \qquad (6) \\\displaystyle x^{10}+\dfrac 1 {x^{10}} =1~~from~(6)~~using~(1) \qquad (7) \\\displaystyle x^{20}+\dfrac 1 {x^{20}} =-1~~from~(7)~~using(1) \qquad (8) \\\displaystyle x^{40}+\dfrac 1 {x^{40}}~=-1~~from~(8)~~using(1) \qquad (9) \\\displaystyle x^{80}+\dfrac 1 {x^{80}}~=-1~~from~(9)~~using(1) \qquad (10) \\\displaystyle x^{120}+\dfrac 1 {x^{120}}~=2~~from~(9)*(10)~~using(3) \qquad (11) \\\displaystyle x^{160}+\dfrac 1 {x^{160}}=-1~~from~(11)~~using(1) \qquad (12) \\\displaystyle {\Large \color{#D61F06}{x^{200}+\dfrac 1 {x^{200}}=-1} }~~from~(9)*(12)~~using(3)

Note:

For integer

n > 0 , x 10 2 n + 1 x 10 2 n = 1 ( 8 ) to ( 10 ) x 3 n + 1 x 3 n = 0 n>0,x^{10*2^n}+\dfrac 1 {x^{10*2^n}} =-1 \qquad (8) \text{ to } (10) \\ x^{3^n}+\dfrac 1 {x^{3^n}} =0

and such other.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...