Tangent roots in algebraic equation?

Geometry Level 5

( 1 + 2 x 1 x 2 ) ( 1 + x 5 10 x 3 + 5 x 5 x 4 10 x 2 + 1 ) = 2 \left( 1 + \dfrac{2x}{1-x^2} \right) \left( 1 + \dfrac{x^5 - 10x^3 + 5x}{5x^4 - 10x^2 + 1} \right) = 2

The six roots of the equations above are x 1 , x 2 , , x 6 x_1, x_2, \ldots, x_6 . Given that

x 1 = tan b π c , x 2 = tan d π e , x 3 = tan f π g , x 4 = tan h π k , x 5 = tan m π n , x 6 = tan z π t , x_1 = \tan \dfrac{b \pi }{c} , x_2 = \tan \dfrac{d \pi}e, x_3 = \tan \dfrac{f \pi}g , \\ x_4 = \tan \dfrac{h \pi}k , x_5 = \tan \dfrac{m\pi }n, x_6 = \tan \dfrac{z \pi }t,

where b , c , d , e , f , g , h , k , m , n , z b,c,d,e,f,g,h,k,m,n,z are integers such that gcd ( b , c ) = gcd ( d , e ) = gcd ( f , g ) = gcd ( h , k ) = gcd ( m , n ) = gcd ( z , t ) = 1 \gcd(b,c) = \gcd(d,e) = \gcd(f,g) = \gcd(h,k) = \gcd(m,n) = \gcd(z,t) = 1 .

If all the angles shown above are in the interval ( π 2 , π 2 ) \left( -\dfrac \pi 2 , \dfrac\pi 2 \right) , compute b + c + d + e + f + g + h + k + m + n + z + t b+c+d+e+f+g+h+k+m+n+z+t .


Inspiration .


The answer is 182.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zk Lin
Feb 18, 2016

Write c = cos t , s = sin t c=\cos t, s=\sin t

Note that ( c + i s ) 5 = cos 5 t + i sin 5 t (c+is)^{5}=\cos 5t+i \sin 5t by De Moivre's theorem.

Expanding ( c + i s ) 5 (c+is)^{5} , we get

( c 5 10 s 2 c 3 + 5 s 4 c ) + ( s 5 10 s 3 c 2 + 5 s c 4 ) i (c^{5}-10s^{2}c^{3}+5s^{4}c)+(s^{5}-10s^{3}c^{2}+5sc^{4})i

Equating like terms, we find that

cos 5 t = c 5 10 s 2 c 3 + 5 s 4 c \cos 5t=c^{5}-10s^{2}c^{3}+5s^{4}c

sin 5 t = s 5 10 s 3 c 2 + 5 s c 4 \sin 5t=s^{5}-10s^{3}c^{2}+5sc^{4}

Therefore, sin 5 t cos 5 t = s 5 10 s 3 c 2 + 5 s c 4 c 5 10 s 2 c 3 + 5 s 4 c \frac{\sin 5t}{\cos 5t}=\frac{s^{5}-10s^{3}c^{2}+5sc^{4}}{c^{5}-10s^{2}c^{3}+5s^{4}c} .

Dividing the numerator and denominator by c 5 c^{5} gives

tan 5 t = t 5 10 t 3 + 5 t 5 t 4 10 t 2 + 1 \tan 5t= \frac{t^{5}-10t^{3}+5t}{5t^{4}-10t^{2}+1}

Note also that tan 2 t = 2 t 1 t 2 \tan 2t= \frac{2t}{1-t^{2}}

It is obvious now what we should do. Make the substitution x = tan t x=\tan t !

The equation simplifies to:

( 1 + tan 2 t ) ( 1 + tan 5 t ) = 2 (1+\tan 2t)(1+ \tan 5t)=2

1 + tan 5 t + tan 2 t + tan 5 t tan 2 t = 2 1+\tan 5t+\tan2t+\tan 5t \tan 2t=2

1 + sin 5 t cos 5 t + sin 2 t cos 2 t + sin 5 t sin 2 t cos 5 t cos 2 t = 2 1+ \frac{\sin5t}{\cos5t}+\frac{\sin2t}{\cos2t}+\frac{\sin 5t \sin 2t}{\cos 5t \cos 2t}=2

cos 2 t cos 5 t + sin 5 t cos 2 t + sin 2 t cos 5 t + sin 5 t sin 2 t cos 5 t cos 2 t = 2 \frac{\cos 2t\cos 5t+\sin 5t\cos 2t+\sin 2t\cos 5t+\sin 5t\sin 2t}{\cos 5t\cos 2t}=2

cos ( 5 t 2 t ) + sin ( 5 t + 2 t ) cos 2 t cos 5 t = 2 \frac{\cos(5t-2t)+\sin(5t+2t)}{\cos 2t \cos 5t}=2

cos ( 5 t 2 t ) + sin ( 5 t + 2 t ) 1 2 ( cos 7 t + cos 3 t ) = 2 \frac{\cos(5t-2t)+\sin(5t+2t)}{\frac{1}{2}(\cos 7t+ \cos 3t)}=2

cos 3 t + sin 7 t = cos 7 t + cos 3 t \cos 3t+\sin 7t=\cos 7t+\cos 3t

tan 7 t = 1 \tan 7t=1

The solutions are: (considering principal values of π 2 7 t π 2 ) \frac{-\pi}{2} \leq 7t \leq \frac{\pi}{2})

7 t = 11 π 4 , 7 π 4 , 3 π 4 , π 4 , 5 π 4 , 9 π 4 , 13 π 4 7t= \frac{-11\pi}{4},\frac{-7\pi}{4}, \frac{-3\pi}{4}, \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}

t = 11 π 28 , 7 π 28 , 3 π 28 , π 28 , 5 π 28 , 9 π 28 , 13 π 28 t= \frac{-11\pi}{28},\frac{-7\pi}{28}, \frac{-3\pi}{28}, \frac{\pi}{28}, \frac{5\pi}{28}, \frac{9\pi}{28}, \frac{13\pi}{28}

x = tan t = tan ( 11 π 28 ) , tan ( 7 π 28 ) = 1 , tan ( 3 π 28 ) , tan ( π 28 ) , tan ( 5 π 28 ) , tan ( 9 π 28 ) , tan ( 13 π 28 ) x= \tan t=\tan{(\frac{-11\pi}{28})},\tan{(\frac{-7\pi}{28})}=-1, \tan{(\frac{-3\pi}{28})}, \tan{(\frac{\pi}{28})}, \tan{(\frac{5\pi}{28})}, \tan{(\frac{9\pi}{28})}, \tan{(\frac{13\pi}{28})}

However, we must exclude x = 1 x=-1 as the answer since 1 x 2 0 1-x^{2} \neq 0 .

Therefore, the desired answer is 11 3 + 1 + 5 + 9 + 13 + 6 ( 28 ) = 182 -11-3+1+5+9+13+6(28)=\boxed{182}

Moderator note:

Nice observation of the tangent substitution to simplify the expression.

Son Nguyen
Feb 18, 2016

The conditional of the equation is 5 x 4 10 x 2 + 1 0 5x^4-10x^2+1 \neq 0 and x ± 1 x\neq \pm 1

Let x = t a n t x=tant and π 2 < t < π 2 \frac{-\pi }{2}< t< \frac{\pi}{2} the equation can be rewrite as: ( 1 + 2 t a n t 1 t a n 2 t ) ( 1 + t a n 5 t 10 t a n 3 t + 5 t a n t 5 t a 4 t 10 t a n 2 t + 1 ) (1+\frac{2tant}{1-tan^2t})(1+\frac{tan^5t-10tan^3t+5tant}{5ta^4t-10tan^2t+1}) ( 1 + 2 t a n t ) ( 1 + 5 t a n t ) = 2 \Leftrightarrow (1+2tant)(1+5tant)=2 t a n 2 t + t a n 5 t = 1 t a n 2 t × t a n 5 t \Leftrightarrow tan2t+tan5t=1-tan2t\times tan5t t a n ( 2 t + 5 t ) = 1 \Leftrightarrow tan(2t+5t)=1 t a n 7 t = 1 \Leftrightarrow tan7t=1 t = π 28 + k π 7 \Leftrightarrow t=\frac{\pi}{28}+\frac{k\pi}{7} So we have six solution: x = t a n 11 π 28 ; t a n 3 π 28 ; t a n π 28 ; t a n 5 π 28 ; t a n 9 π 28 ; t a n 13 π 28 x=tan\frac{-11\pi}{28};tan\frac{-3\pi}{28};tan\frac{\pi}{28};tan\frac{5\pi}{28};tan\frac{9\pi}{28};tan\frac{13\pi}{28}

And b + c + d + e + f + g + h + k + m + n + z + t = 182 \LARGE b+c+d+e+f+g+h+k+m+n+z+t=182

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...