( 1 + 1 − x 2 2 x ) ( 1 + 5 x 4 − 1 0 x 2 + 1 x 5 − 1 0 x 3 + 5 x ) = 2
The six roots of the equations above are x 1 , x 2 , … , x 6 . Given that
x 1 = tan c b π , x 2 = tan e d π , x 3 = tan g f π , x 4 = tan k h π , x 5 = tan n m π , x 6 = tan t z π ,
where b , c , d , e , f , g , h , k , m , n , z are integers such that g cd ( b , c ) = g cd ( d , e ) = g cd ( f , g ) = g cd ( h , k ) = g cd ( m , n ) = g cd ( z , t ) = 1 .
If all the angles shown above are in the interval ( − 2 π , 2 π ) , compute b + c + d + e + f + g + h + k + m + n + z + t .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice observation of the tangent substitution to simplify the expression.
The conditional of the equation is 5 x 4 − 1 0 x 2 + 1 = 0 and x = ± 1
Let x = t a n t and 2 − π < t < 2 π the equation can be rewrite as: ( 1 + 1 − t a n 2 t 2 t a n t ) ( 1 + 5 t a 4 t − 1 0 t a n 2 t + 1 t a n 5 t − 1 0 t a n 3 t + 5 t a n t ) ⇔ ( 1 + 2 t a n t ) ( 1 + 5 t a n t ) = 2 ⇔ t a n 2 t + t a n 5 t = 1 − t a n 2 t × t a n 5 t ⇔ t a n ( 2 t + 5 t ) = 1 ⇔ t a n 7 t = 1 ⇔ t = 2 8 π + 7 k π So we have six solution: x = t a n 2 8 − 1 1 π ; t a n 2 8 − 3 π ; t a n 2 8 π ; t a n 2 8 5 π ; t a n 2 8 9 π ; t a n 2 8 1 3 π
And b + c + d + e + f + g + h + k + m + n + z + t = 1 8 2
Problem Loading...
Note Loading...
Set Loading...
Write c = cos t , s = sin t
Note that ( c + i s ) 5 = cos 5 t + i sin 5 t by De Moivre's theorem.
Expanding ( c + i s ) 5 , we get
( c 5 − 1 0 s 2 c 3 + 5 s 4 c ) + ( s 5 − 1 0 s 3 c 2 + 5 s c 4 ) i
Equating like terms, we find that
cos 5 t = c 5 − 1 0 s 2 c 3 + 5 s 4 c
sin 5 t = s 5 − 1 0 s 3 c 2 + 5 s c 4
Therefore, cos 5 t sin 5 t = c 5 − 1 0 s 2 c 3 + 5 s 4 c s 5 − 1 0 s 3 c 2 + 5 s c 4 .
Dividing the numerator and denominator by c 5 gives
tan 5 t = 5 t 4 − 1 0 t 2 + 1 t 5 − 1 0 t 3 + 5 t
Note also that tan 2 t = 1 − t 2 2 t
It is obvious now what we should do. Make the substitution x = tan t !
The equation simplifies to:
( 1 + tan 2 t ) ( 1 + tan 5 t ) = 2
1 + tan 5 t + tan 2 t + tan 5 t tan 2 t = 2
1 + cos 5 t sin 5 t + cos 2 t sin 2 t + cos 5 t cos 2 t sin 5 t sin 2 t = 2
cos 5 t cos 2 t cos 2 t cos 5 t + sin 5 t cos 2 t + sin 2 t cos 5 t + sin 5 t sin 2 t = 2
cos 2 t cos 5 t cos ( 5 t − 2 t ) + sin ( 5 t + 2 t ) = 2
2 1 ( cos 7 t + cos 3 t ) cos ( 5 t − 2 t ) + sin ( 5 t + 2 t ) = 2
cos 3 t + sin 7 t = cos 7 t + cos 3 t
tan 7 t = 1
The solutions are: (considering principal values of 2 − π ≤ 7 t ≤ 2 π )
7 t = 4 − 1 1 π , 4 − 7 π , 4 − 3 π , 4 π , 4 5 π , 4 9 π , 4 1 3 π
t = 2 8 − 1 1 π , 2 8 − 7 π , 2 8 − 3 π , 2 8 π , 2 8 5 π , 2 8 9 π , 2 8 1 3 π
x = tan t = tan ( 2 8 − 1 1 π ) , tan ( 2 8 − 7 π ) = − 1 , tan ( 2 8 − 3 π ) , tan ( 2 8 π ) , tan ( 2 8 5 π ) , tan ( 2 8 9 π ) , tan ( 2 8 1 3 π )
However, we must exclude x = − 1 as the answer since 1 − x 2 = 0 .
Therefore, the desired answer is − 1 1 − 3 + 1 + 5 + 9 + 1 3 + 6 ( 2 8 ) = 1 8 2