Hola, A revisit to Beta, Gamma and Digamma

Calculus Level 3

{ g n ( x ) = x 1 / n f n ( a ) = 0 1 ( 1 x a ) n d x n N \begin{cases} g_n(x)=x^{1/n} \\ \displaystyle f_n(a)= \int_0^1 (1-x^a)^n dx \end{cases} \qquad n \in \mathbb N

For g ( n ) g(n) and f ( n ) f(n) as defined above, a = 2 ( lim n g n ( f n ( a ) ) a ! ) = α \displaystyle \sum_{a=2}^{\infty}\left( \lim_{n\to \infty} \frac {g_n(f_n(a))}{a!}\right) =\alpha

Find α \lfloor \alpha \rfloor , where \lfloor \cdot \rfloor denotes the floor function .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohan Shinde
Sep 15, 2018

Let J = a = 2 ( lim n g n ( f n ( a ) ) a ! ) J=\sum_{a=2}^{\infty} \left( \lim_{n\to \infty} \frac {g_n(f_n(a))}{a! }\right)

And I = lim n g n ( f n ( a ) ) I=\lim_{n\to \infty} g_n(f_n(a)) = lim n ( 0 1 ( 1 x a ) n d x ) 1 / n =\lim_{n\to \infty} \left(\int_0^1 (1-x^a)^n dx\right)^{1/n} = lim n ( 1 a ) 1 / n ( Γ ( n + 1 ) Γ ( 1 / a ) Γ ( n + 1 + 1 a ) ) 1 / n =\lim_{n\to \infty} \left(\frac {1}{a}\right) ^{1/n} \left(\frac {\Gamma (n+1)\Gamma (1/a)}{\Gamma \left( n+1+ \frac 1a\right)}\right) ^{1/n} = lim n ( Γ ( n + 1 ) Γ ( 1 / a ) Γ ( n + 1 + 1 a ) ) 1 / n =\lim_{n\to \infty} \left(\frac {\Gamma (n+1)\Gamma (1/a)}{\Gamma \left( n+1+ \frac 1a\right)}\right) ^{1/n} = exp ( lim n ln ( Γ ( n + 1 ) ) + ln ( Γ ( 1 / a ) ) ln ( Γ ( n + 1 + 1 a ) ) n ) =\exp {\left( \lim_{n\to \infty} \frac {\ln( \Gamma (n+1))+\ln (\Gamma (1/a))-\ln\left(\Gamma\left(n+1+\frac 1a\right)\right)}{n}\right) }

Applying L'Hospital rule we get I = exp ( lim n ( ψ ( n + 1 ) ψ ( n + 1 + 1 a ) ) ) I=\exp {\left(\lim_{n\to \infty} \left(\psi(n+1)-\psi\left(n+1+\frac 1a\right)\right)\right)}

But for large x x We have ψ ( x ) ln ( x ) \psi(x)\sim \ln (x)

Hence we get I = exp ( lim n ( ln ( n + 1 ) ln ( n + 1 + 1 / a ) ) ) = 1 I=\exp {(\lim_{n\to \infty} (\ln (n+1)-\ln (n+1 + 1/a)))}=1

Hence J = a = 2 1 a ! = e 2 J=\sum_{a=2}^{\infty} \frac {1}{a!} =e-2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...