Holiday Problem 3

Geometry Level 4

x = ( n = 1 44 cos n ) ÷ ( n = 1 44 sin n ) \large x = \left ( {\displaystyle\sum\limits_{n=1}^{44} \cos n^\circ} \right) \div \left( {\displaystyle\sum\limits_{n=1}^{44} \sin n^\circ} \right)

What is the value of 100 x \lfloor 100x \rfloor ?


The answer is 241.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Abhishek Sinha
Dec 2, 2015

We have, x + 1 = n = 1 44 ( sin n + cos n ) n = 1 44 sin n x+1= \frac{\sum_{n=1}^{44}( \sin n^\circ + \cos n^\circ)}{\sum_{n=1}^{44} \sin n^\circ} = 2 n = 1 44 ( 1 2 sin n + 1 2 cos n ) n = 1 44 sin n = \sqrt{2}\frac{\sum_{n=1}^{44}( \frac{1}{\sqrt{2}}\sin n^\circ +\frac{1}{\sqrt{2}} \cos n^\circ)}{\sum_{n=1}^{44} \sin n^\circ} = 2 n = 1 44 cos ( 4 5 n ) n = 1 44 sin n =\sqrt{2} \frac{\sum_{n=1}^{44} \cos (45^\circ-n^\circ)}{\sum_{n=1}^{44} \sin n^\circ} = 2 n = 1 44 cos ( n ) n = 1 44 sin n = 2 x =\sqrt{2} \frac{\sum_{n=1}^{44} \cos (n^\circ)}{\sum_{n=1}^{44} \sin n^\circ}=\sqrt{2}x Thus, x = 1 2 1 = 2 + 1 x=\frac{1}{\sqrt{2}-1}=\sqrt{2}+1

At last you give x = 2 1 w h i c h s h o u l d b e 2 + 1 \sqrt { 2 } -1\quad which\quad should\quad be\quad \sqrt { 2 } +1

Rishabh Deep Singh - 5 years, 4 months ago

Same method. Nice solution

Shreyash Rai - 5 years, 5 months ago

I struggled with the second line for quite a while, thinking it was some identity I didn't know. Then I realized 1 2 sin n + 1 2 cos n = sin 4 5 sin n + cos 4 5 cos n \frac{1}{\sqrt{2}}\sin n^\circ+\frac{1}{\sqrt{2}}\cos n^\circ=\sin 45^\circ \sin n^\circ+\cos 45^\circ \cos n^\circ . Very nice and succinct!

Eric Nordstrom - 2 years, 2 months ago
Parth Lohomi
Mar 8, 2015

Consider the sum n = 1 44 cis n \sum_{n = 1}^{44} \text{cis } n^\circ . The fraction is given by the real part divided by the imaginary part.

The sum can be written 1 + n = 0 44 cis n = 1 + cis 4 5 1 cis 1 1 - 1 + \sum_{n = 0}^{44} \text{cis } n^\circ = - 1 + \dfrac {\text{cis } 45^\circ - 1}{\text{cis } 1^\circ - 1} (by De Moivre's Theorem with geometric series)

= 1 + 2 2 1 + i 2 2 cis 1 1 = 1 + ( 2 2 1 + i 2 2 ) ( cis ( 1 ) 1 ) ( cos 1 1 ) 2 + sin 2 1 = - 1 + \dfrac {\frac {\sqrt {2}}{2} - 1 + \dfrac {i \sqrt {2}}{2}}{\text{cis } 1^\circ - 1} = - 1 + \dfrac {\left( \dfrac {\sqrt {2}}{2} - 1 + \dfrac {i \sqrt {2}}{2} \right) (\text{cis } ( - 1^\circ) - 1)}{(\cos 1^\circ - 1)^2 + \sin^2 1^\circ} (after multiplying by complex conjugate)

= 1 + ( 2 2 1 ) ( cos 1 1 ) + 2 2 sin 1 + i ( ( 1 2 2 ) sin 1 + 2 2 ( cos 1 1 ) ) 2 ( 1 cos 1 ) = - 1 + \dfrac {\left( \frac {\sqrt {2}}{2} - 1 \right) (\cos 1^\circ - 1) + \dfrac {\sqrt {2}}{2}\sin 1^\circ + i\left( \left(1 - \dfrac {\sqrt {2}}{2} \right) \sin 1^\circ + \dfrac {\sqrt {2}}{2} (\cos 1^\circ - 1)\right)}{2(1 - \cos 1^\circ)}

= 1 2 2 4 i 2 4 + sin 1 ( 2 2 + i ( 1 2 2 ) ) 2 ( 1 cos 1 ) = - \dfrac {1}{2} - \dfrac {\sqrt {2}}{4} - \dfrac {i\sqrt {2}}{4} + \dfrac {\sin 1^\circ \left( \dfrac {\sqrt {2}}{2} + i\left( 1 - \dfrac {\sqrt {2}}{2} \right) \right)}{2(1 - \cos 1^\circ)}

Using the tangent half-angle formula, this becomes ( 1 2 + 2 4 [ cot ( 1 / 2 ) 1 ] ) + i ( 1 2 cot ( 1 / 2 ) 2 4 [ cot ( 1 / 2 ) + 1 ] ) \left( - \dfrac {1}{2} + \dfrac {\sqrt {2}}{4}[\cot (1/2^\circ) - 1] \right) + i\left( \dfrac {1}{2}\cot (1/2^\circ) - \dfrac {\sqrt {2}}{4}[\cot (1/2^\circ) + 1] \right) .

Dividing the two parts and multiplying each part by 4, the fraction is 2 + 2 [ cot ( 1 / 2 ) 1 ] 2 cot ( 1 / 2 ) 2 [ cot ( 1 / 2 ) + 1 ] \dfrac { - 2 + \sqrt {2}[\cot (1/2^\circ) - 1]}{2\cot (1/2^\circ) - \sqrt {2}[\cot (1/2^\circ) + 1]} .

Although an exact value for cot ( 1 / 2 ) \cot (1/2^\circ) in terms of radicals will be difficult, this is easily known: it is really large!

So treat it as though it were \infty . The fraction is approximated by 2 2 2 = 2 ( 2 + 2 ) 2 = 1 + 2 100 ( 1 + 2 ) = 241 \dfrac {\sqrt {2}}{2 - \sqrt {2}} = \dfrac {\sqrt {2}(2 + \sqrt {2})}{2} = 1 + \sqrt {2}\Rightarrow \lfloor 100(1+\sqrt2)\rfloor=\boxed{241}

Cos1 +Cos2+Cos3...................Cos44/Sin1+Sin2..........Sin44

(Cos1+Cos44) +(Cos2+Cos43).......(Cos22+Cos23)/(Sin1+Sin44) +(Sin2+Sin43).......(Sin22+Sin23)

(2cos45/2cos43/2) +.............+(2cos45/2Cos1/2)/(2sin45/2cos43/2) +.............+(2sin45/2cos1/2)

{cot45/2}

Shiv Kumar - 5 years, 11 months ago

Went with the same approach

Priyesh Pandey - 6 years, 3 months ago
Nikhil Jaiswal
Mar 8, 2015

by summation formula x reduces to cot22.5 =2.414 then we want 100 x= 100 2.414=241.4 so answer 241

Alexandre Gomes
Dec 5, 2015

It's not rocket science! All you need to solve this question is notice that 1+44 = 2+43 = ...= 22+23. Then, you may want to transform cos a + cos b and sin a + sin b into a product. When you simplify, will will find x=cot(22.5).

Gopal Narayanan
Dec 1, 2015

Sum is cot (45/2)

Aakash Khandelwal
May 25, 2015

expand numerator and denominator and take (first, last);(second, second last)......... terms and apply sum to product rules in numerator and denominator. we get required ratio as cot(22.5)=2.414...... therefore answer=241

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...