Holiday Problem #5

Algebra Level 3

5 x x + 2 × ( 0.2 ) 4 x + 2 x 4 = 125 × ( 0.04 ) x 2 x 4 \LARGE \sqrt[{x-4}]{ \color{#20A900}5^{ \frac {x}{\sqrt x + 2} } \times (\color{#20A900} {0.2})^{ \frac {4}{\sqrt x + 2} } } = \color{#20A900} {125} \times (\color{#20A900} {0.04})^{ \frac {x-2}{x-4} }

Solve for x x


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Curtis Clement
Mar 9, 2015

( 5 x x + 2 × 5 4 x + 2 ) 1 x 4 = 5 1 x + 2 = 5 3 + 2 ( 2 x ) x 4 (5^{\frac{x}{\sqrt{x} +2}} \times\ 5^{-\frac{4}{\sqrt{x} +2}})^{\frac{1}{x-4}} = 5^{\frac{1}{\sqrt{x} +2}} = 5 ^{3 + \frac{2(2-x)}{x-4}} 1 x + 2 = ( 3 x 12 ) + 4 2 x x 4 = x 8 x 4 \Rightarrow\frac{1}{\sqrt{x} +2} = \frac{(3x-12) +4-2x}{x-4} = \frac{x-8}{x-4} x 4 = ( x 8 ) ( x + 2 ) \Rightarrow\ x-4 = (x-8)(\sqrt{x} +2) Now let y = x y = \sqrt{x} , y 2 = x y^{2} = x : ( y 2 8 ) ( y + 2 ) y 2 4 = ( y 2 8 ) ( y + 2 ) ( y + 2 ) ( y 2 ) (y^2 - 8)(y+2) - y^2 - 4 = (y^2 -8)(y+2) - (y+2)(y-2) = ( y + 2 ) ( y 2 y 6 ) = ( y + 2 ) 2 ( y 3 ) = 0 = (y+2)(y^2 - y -6) = (y+2)^2 (y-3) = 0 Now 1 0 \frac{1}{0} is undefined so x = y 2 \sqrt{x} = y\ne -2 x = 3 x = 9 \Rightarrow\sqrt{x} = 3 \therefore\ \boxed{x = 9} .

Alternatively, you can also proceed like this:

1 x + 2 = x 8 x 4 = x 8 ( x + 2 ) ( x 2 ) x 2 = x 8 x x 6 = 0 ( x 3 ) ( x + 2 ) = 0 x = 3 x = 9 \frac{1}{\sqrt{x}+2}=\frac{x-8}{x-4}=\frac{x-8}{(\sqrt{x}+2)(\sqrt{x}-2)}\\ \implies \sqrt{x}-2=x-8\\ \implies x-\sqrt{x}-6=0\\ \implies (\sqrt{x}-3)(\sqrt{x}+2)=0\implies \sqrt{x}=3\implies x=9

The negative solution x = ( 2 ) \sqrt{x}=(-2) is rejected because it makes the original equation undefined.

Prasun Biswas - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...