Let denote the term of the Fibonacci Sequence . Evaluate the product above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using Binet's Formula F n = 5 1 [ ϕ n − ( − ϕ − 1 ) n ] where ϕ = 2 1 ( 1 + 5 ) , we can show that F n + 1 2 − F n − 1 2 = F 2 n , so we are calculating n = 2 ∏ ∞ F 2 n + 1 F 2 n − 1 . Using Binet's Formula again, F 2 n ± 1 = 5 1 [ ϕ 2 n − ϕ − 2 n ] ± 1 = 5 1 ϕ − 2 n [ ϕ 4 n ± 5 ϕ 2 n − 1 ] Since ϕ 2 − ϕ − 2 = 5 , we deduce that F 2 n ± 1 = = = 5 1 ϕ − 2 n [ ϕ 4 n ± ϕ 2 n + 2 ∓ ϕ 2 n − 2 − 1 ] 5 1 ϕ − 2 n [ ( ϕ 2 n ± ϕ 2 ) ( ϕ 2 n ∓ ϕ − 2 ) ] = 5 1 ϕ − 2 n [ ( ϕ 2 n − 2 ± 1 ) ( ϕ 2 n + 2 ∓ 1 ) ] 5 1 ϕ − 2 n a ± ( n − 1 ) a ∓ ( n + 1 ) where a ± ( n ) = ϕ 2 n ± 1 . Thus F 2 n + 1 F 2 n − 1 = a + ( n − 1 ) a − ( n + 1 ) a − ( n − 1 ) a + ( n + 1 ) and hence n = 2 ∏ N F 2 n + 1 F 2 n − 1 = = n = 2 ∏ N a + ( n − 1 ) a − ( n + 1 ) a − ( n − 1 ) a + ( n + 1 ) = n = 2 ∏ N a − ( n + 1 ) a − ( n − 1 ) × n = 2 ∏ N a + ( n − 1 ) a + ( n + 1 ) a − ( N ) a − ( N + 1 ) a − ( 1 ) a − ( 2 ) × a + ( 1 ) a + ( 2 ) a + ( N ) a + ( N + 1 ) since the last two products telescope neatly. Thus n = 2 ∏ N F 2 n + 1 F 2 n − 1 = a + ( 1 ) , a + ( 2 ) a − ( 1 ) a − ( 2 ) × a − ( N ) a + ( N ) × a − ( N + 1 ) a + ( N + 1 ) = 3 1 a − ( N ) a + ( N ) × a − ( N + 1 ) a + ( N + 1 ) . Letting N → ∞ , the fact that F 2 N → ∞ implies that a − ( N ) a + ( N ) → 1 , and hence n = 2 ∏ ∞ F 2 n + 1 F 2 n − 1 = 3 1 .