Holy Fibonacci!

Calculus Level 5

n = 2 ( 1 2 F n + 1 2 F n 1 2 + 1 ) = ? \prod_{n=2}^{\infty} \left(1-\dfrac{2}{F_{n+1}^{2}-F_{n-1}^{2}+1}\right) = \ ?

Let F n F_n denote the n th n^\text{th} term of the Fibonacci Sequence . Evaluate the product above.


Image Credit: Flickr Sam Felder .


The answer is 0.33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 4, 2015

Using Binet's Formula F n = 1 5 [ ϕ n ( ϕ 1 ) n ] F_n \; = \; \tfrac{1}{\sqrt{5}}\big[\phi^n - (-\phi^{-1})^{n}\big] where ϕ = 1 2 ( 1 + 5 ) \phi = \tfrac12(1 + \sqrt{5}) , we can show that F n + 1 2 F n 1 2 = F 2 n , F_{n+1}^2 - F_{n-1}^2 \; = \; F_{2n} \;, so we are calculating n = 2 F 2 n 1 F 2 n + 1 . \prod_{n=2}^\infty \frac{F_{2n}-1}{F_{2n}+1} \;. Using Binet's Formula again, F 2 n ± 1 = 1 5 [ ϕ 2 n ϕ 2 n ] ± 1 = 1 5 ϕ 2 n [ ϕ 4 n ± 5 ϕ 2 n 1 ] F_{2n} \pm 1 \; = \; \tfrac{1}{\sqrt{5}}\big[\phi^{2n} - \phi^{-2n}\big] \pm 1 \; = \; \tfrac{1}{\sqrt{5}}\phi^{-2n}\big[\phi^{4n} \pm \sqrt{5}\phi^{2n} - 1\big] Since ϕ 2 ϕ 2 = 5 \phi^2 - \phi^{-2} = \sqrt{5} , we deduce that F 2 n ± 1 = 1 5 ϕ 2 n [ ϕ 4 n ± ϕ 2 n + 2 ϕ 2 n 2 1 ] = 1 5 ϕ 2 n [ ( ϕ 2 n ± ϕ 2 ) ( ϕ 2 n ϕ 2 ) ] = 1 5 ϕ 2 n [ ( ϕ 2 n 2 ± 1 ) ( ϕ 2 n + 2 1 ) ] = 1 5 ϕ 2 n a ± ( n 1 ) a ( n + 1 ) \begin{array}{rcl} F_{2n} \pm 1 & = &\displaystyle \tfrac{1}{\sqrt{5}}\phi^{-2n}\big[\phi^{4n} \pm \phi^{2n +2} \mp \phi^{2n-2} - 1\big] \\ & = & \displaystyle\tfrac{1}{\sqrt{5}}\phi^{-2n}\big[(\phi^{2n} \pm \phi^2)(\phi^{2n} \mp\phi^{-2})\big] \; = \; \tfrac{1}{\sqrt{5}}\phi^{-2n}\big[(\phi^{2n-2} \pm 1)(\phi^{2n+2} \mp 1)\big] \\ & = & \displaystyle \tfrac{1}{\sqrt{5}}\phi^{-2n}a_{\pm}(n-1) a_{\mp}(n+1) \end{array} where a ± ( n ) = ϕ 2 n ± 1 . a_{\pm}(n) \; =\; \phi^{2n} \pm 1 \;. Thus F 2 n 1 F 2 n + 1 = a ( n 1 ) a + ( n + 1 ) a + ( n 1 ) a ( n + 1 ) \frac{F_{2n}-1}{F_{2n}+1} \; = \; \frac{a_{-}(n-1) a_{+}(n+1)}{a_{+}(n-1)a_{-}(n+1)} and hence n = 2 N F 2 n 1 F 2 n + 1 = n = 2 N a ( n 1 ) a + ( n + 1 ) a + ( n 1 ) a ( n + 1 ) = n = 2 N a ( n 1 ) a ( n + 1 ) × n = 2 N a + ( n + 1 ) a + ( n 1 ) = a ( 1 ) a ( 2 ) a ( N ) a ( N + 1 ) × a + ( N ) a + ( N + 1 ) a + ( 1 ) a + ( 2 ) \begin{array}{rcl} \displaystyle\prod_{n=2}^N \frac{F_{2n}-1}{F_{2n}+1} & = & \displaystyle \prod_{n=2}^N \frac{a_{-}(n-1) a_{+}(n+1)}{a_{+}(n-1)a_{-}(n+1)} \; =\; \prod_{n=2}^N \frac{a_{-}(n-1)}{a_{-}(n+1)} \times \prod_{n=2}^N \frac{a_{+}(n+1)}{a_{+}(n-1)} \\ &= & \displaystyle \frac{a_{-}(1)a_{-}(2)}{a_{-}(N)a_{-}(N+1)} \times \frac{a_{+}(N)a_{+}(N+1)}{a_{+}(1)a_{+}(2)} \end{array} since the last two products telescope neatly. Thus n = 2 N F 2 n 1 F 2 n + 1 = a ( 1 ) a ( 2 ) a + ( 1 ) , a + ( 2 ) × a + ( N ) a ( N ) × a + ( N + 1 ) a ( N + 1 ) = 1 3 a + ( N ) a ( N ) × a + ( N + 1 ) a ( N + 1 ) . \prod_{n=2}^N \frac{F_{2n}-1}{F_{2n}+1} \; = \; \frac{a_{-}(1)a_{-}(2)}{a_{+}(1),a_{+}(2)} \times \frac{a_{+}(N)}{a_{-}(N)} \times \frac{a_{+}(N+1)}{a_{-}(N+1)} \; = \; \tfrac13\frac{a_{+}(N)}{a_{-}(N)} \times \frac{a_{+}(N+1)}{a_{-}(N+1)}\;. Letting N N \to \infty , the fact that F 2 N F_{2N} \to \infty implies that a + ( N ) a ( N ) 1 \frac{a_{+}(N)}{a_{-}(N)} \to 1 , and hence n = 2 F 2 n 1 F 2 n + 1 = 1 3 . \prod_{n=2}^\infty \frac{F_{2n}-1}{F_{2n}+1} \; = \; \tfrac13 \;.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...