Homogeneous linear equations 3

Calculus Level 1

What is the general solution to the differential equation y 4 y + 13 y = 0 y''-4y'+13y=0 ?

e 3 x ( c 1 cos 3 x + c 2 sin 3 x ) e^{3x}(c_1\cos 3x+c_2\sin 3x) e 2 x ( c 1 cos 3 x + c 2 sin 3 x ) e^{2x}(c_1\cos 3x+c_2\sin 3x) e 2 x ( c 1 cos 2 x + c 2 sin 3 x ) e^{2x}(c_1\cos 2x+c_2\sin 3x) e 3 x ( c 1 cos 2 x + c 2 sin 2 x ) e^{3x}(c_1\cos 2x+c_2\sin 2x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samir Khan
Jun 16, 2016

The characteristic equation is r 2 4 r + 14 = 0 r = 2 ± 3 i r^2-4r+14=0\implies r=2\pm 3i , so the general solution is e 2 x ( c 1 cos 3 x + c 2 sin 3 x ) e^{2x}(c_1\cos 3x+c_2\sin 3x) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...