Homogenious

Calculus Level 2

If y y satisfies the differential equation 5 y + 2 y = 0 \displaystyle{5y''+2y'=0} , fiind the value of y y .

y = K 1 e 7 5 x + K 2 y=K_1e^{-\frac{7}{5}x}+K_2 y = K 1 e 2 5 x + K 2 y=K_1e^{\frac{2}{5}x}+K_2 y = K 1 e 2 6 x + K 2 y=K_1e^{-\frac{2}{6}x}+K_2 y = K 1 e 2 5 x + K 2 y=K_1e^{-\frac{2}{5}x}+K_2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

v ( t ) = y ( t ) 5 y + 2 y = 0 = 5 v + 2 v d d t ( v ( t ) e 2 t 5 ) = \displaystyle v(t) = y'(t) \rightarrow 5y'' + 2y' = 0 = 5v' + 2v \Rightarrow \frac{d}{dt} (v(t)\large{e^{\frac{2t}{5}}}) = 2 5 e 2 t 5 v ( t ) + v ( t ) e 2 t 5 = e 2 t 5 ( 2 5 v ( t ) + v ( t ) ) = 0 \frac{2}{5}e^{\frac{2t}{5}}v(t) + v'(t)e^{\frac{2t}{5}} = e^{\frac{2t}{5}}(\frac{2}{5}v(t) + v'(t)) = 0 \Rightarrow d ( e 2 t 5 v ( t ) ) = 0 d t e 2 t 5 v ( t ) = k \displaystyle \int d(e^{\frac{2t}{5}}v(t)) = \int 0 \space dt \Rightarrow e^{\frac{2t}{5}}v(t) = k \Rightarrow v ( t ) = y ( t ) = d y d t = k e 2 t 5 v(t) = y'(t) = \dfrac{dy}{dt} = k\large{e^{\frac{-2t}{5}}} \Rightarrow d y = k e 2 t 5 d t + K 2 y ( t ) = K 1 e 2 t 5 + K 2 \displaystyle \int dy = \int k\large{e^{\frac{-2t}{5}}} dt + K_2 \Rightarrow y(t) = K_1 \large{e^{\frac{-2t}{5}}} + K_2

Andre Bourque
Jul 13, 2017

Characteristic equation:

5r^2 + 2r = 0

Which gives solutions:

r = 0, -2/5

Therefore solution to the DE is

Ce^(-2x/5) + K

Where C and K are constants

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...