Hoops

Geometry Level 5

The plot of sin ( x + y ) = cos ( x 2 + y 2 ) \sin(x+y)=\cos\big(x^2+y^2\big) looks like a collection of an infinite number of circles. Find the acute angle between the smallest two circles in this family of circles.

The answer can be written as cos 1 ( A π 1 B π 2 + C π + 1 ) \cos^{-1} \left(\dfrac{A\pi-1}{\sqrt{B\pi^2+C\pi+1}}\right) for positive integers A , B , C . A, B, C.

Find A × B × C . A\times B\times C.


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patrick Corn
Oct 18, 2017

Let X = x 2 + y 2 , Y = x + y . X = x^2+y^2, Y = x+y. If cos X = sin Y , \cos X = \sin Y, then there are two cases: either sin X = cos Y \sin X = \cos Y or sin X = cos Y . \sin X = -\cos Y.

In the first case, sin ( X + Y ) = sin X cos Y + cos X sin Y = sin 2 X + cos 2 X = 1 , \sin(X+Y) = \sin X \cos Y + \cos X \sin Y = \sin^2 X + \cos^2 X = 1, so X + Y = π / 2 + 2 π k , X+Y = \pi/2 + 2\pi k, k k an integer.

In the second case, sin ( X Y ) = sin X cos Y cos X sin Y = sin 2 X cos 2 X = 1 , \sin(X-Y) = \sin X \cos Y - \cos X \sin Y = -\sin^2 X - \cos^2 X = -1, so X Y = 3 π / 2 + 2 π k , X-Y = 3\pi/2 +2\pi k, k k an integer.

The first case is of the form x 2 + y 2 + x + y = π / 2 + 2 π k . x^2+y^2+x+y = \pi/2 + 2\pi k. These are concentric circles centered at ( 1 / 2 , 1 / 2 ) (-1/2,-1/2) with radius π + 1 2 + 2 π k \sqrt{\frac{\pi+1}2 + 2\pi k} , so k 0. k \ge 0.

The second case is of the form x 2 + y 2 x y = 3 π / 2 + 2 π k . x^2+y^2-x-y = 3\pi/2 + 2\pi k. These are concentric circles centered at ( 1 / 2 , 1 / 2 ) (1/2,1/2) with radius 3 π + 1 2 + 2 π k \sqrt{\frac{3\pi+1}2 + 2\pi k} , so k 0. k \ge 0.

The smallest two circles are clearly when k = 0. k=0. The points of intersection are where x 0 2 + y 0 2 + x 0 + y 0 = π / 2 x_0^2+y_0^2+x_0+y_0 = \pi/2 and x 0 2 + y 0 2 x 0 y 0 = 3 π / 2 , x_0^2+y_0^2-x_0-y_0 = 3\pi/2, so x 0 2 + y 0 2 = π x_0^2+y_0^2 = \pi and x 0 + y 0 = π / 2. x_0+y_0 = -\pi/2. The angle between the circles is the same as the angle between the radii. We can compute this by dot products. This is not too bad since we know the length of the radii, so we know the denominator of the formula cos θ = x y x y . \cos \theta = \frac{{\bf x} \cdot {\bf y}}{\|x\| \|y\|}. cos θ = ( ( x 0 , y 0 ) + ( 1 / 2 , 1 / 2 ) ) ( ( x 0 , y 0 ) + ( 1 / 2 , 1 / 2 ) ) π + 1 2 3 π + 1 2 = x 0 2 + y 0 2 1 / 2 π + 1 2 3 π + 1 2 = π 1 / 2 3 π 2 + 4 π + 1 4 = 2 π 1 3 π 2 + 4 π + 1 . \cos \theta = \frac{((x_0,y_0) + (-1/2,-1/2)) \cdot ((x_0,y_0) + (1/2,1/2))}{\sqrt{\frac{\pi+1}2}\sqrt{\frac{3\pi +1}2}} = \frac{x_0^2+y_0^2 - 1/2}{\sqrt{\frac{\pi+1}2}\sqrt{\frac{3\pi +1}2}} = \frac{\pi - 1/2}{\sqrt{\frac{3\pi^2+4\pi + 1}4}} = \frac{2\pi-1}{\sqrt{3\pi^2+4\pi+1}}.

So the answer is 2 × 3 × 4 = 24 . 2 \times 3 \times 4 = \fbox{24}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...