Horrible Limit

Calculus Level 5

lim x ( x 2 + 2 x + 3 x 2 + 3 ) x \large \lim_{x \to \infty} \left( \sqrt{x^2+2x+3} - \sqrt{x^2+3} \right)^x

Calculate the above limit to 3 decimal places.


The answer is 0.606.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 31, 2018

L = lim x ( x 2 + 2 x + 3 x 2 + 3 ) x = lim x ( x 1 + 2 x + 3 x 2 x 1 + 3 x 2 ) x = lim x x x ( ( 1 + 2 x + 3 x 2 ) 1 2 ( 1 + 3 x 2 ) 1 2 ) x By binomial expansion = lim x x x ( ( 1 + 1 2 ( 2 x + 3 x 2 ) 1 8 ( 2 x + 3 x 2 ) 2 + ) ( 1 + 1 2 ( 3 x 2 ) 1 8 ( 3 x 2 ) 2 + ) ) x = lim x x x ( 1 x 1 2 x 2 + O ( x 3 ) ) x = lim x ( 1 1 2 x + O ( x 2 ) ) 2 x ( 1 2 ) = e 1 2 = 1 e 0.606 \begin{aligned} L & = \lim_{x \to \infty} \left(\sqrt{x^2+2x+3} - \sqrt{x^2+3}\right)^x \\ & = \lim_{x \to \infty} \left(x\sqrt{1+\frac 2x+\frac 3{x^2}} - x\sqrt{1+\frac 3{x^2}}\right)^x \\ & = \lim_{x \to \infty} x^x\left({\color{#3D99F6}\left(1+\frac 2x+\frac 3{x^2}\right)^\frac 12 - \left(1+\frac 3{x^2}\right)^\frac 12}\right)^x & \small \color{#3D99F6} \text{By binomial expansion} \\ & = \lim_{x \to \infty} x^x\left({\color{#3D99F6}\left(1+\frac 12 \left(\frac 2x + \frac 3{x^2}\right)-\frac 18\left(\frac 2x + \frac 3{x^2}\right)^2+\cdots \right)-\left(1+\frac 12 \left(\frac 3{x^2}\right)-\frac 18\left(\frac 3{x^2}\right)^2+\cdots \right)}\right)^x \\ & = \lim_{x \to \infty} x^x\left(\frac 1x - \frac 1{2x^2} + O(x^{-3}) \right)^x \\ & = \lim_{x \to \infty} \left(1 - \frac 1{2x} + O(x^{-2}) \right)^{-2x \left(-\frac 12 \right)} \\ & = e^{-\frac 12} = \frac 1{\sqrt e} \approx \boxed{0.606} \end{aligned}

Naren Bhandari
Mar 27, 2018

L = lim x ( x 2 + 2 x + 3 x 2 + 3 ) x L = lim x ( 2 x x 2 + 2 x + 3 + x 2 + 3 ) x L = lim x ( x 2 + 2 x + 3 + x 3 + 3 + 2 x ( x 2 + 2 x + 3 + x 2 + 3 ) x 2 + 2 x + 3 + x 2 + 3 ) x L = lim x ( 1 + 2 x ( x 2 + 2 x + 3 + x 2 + 3 ) x 2 + 2 x + 3 + x 2 + 3 ) x L = lim x ( 1 + 2 x x 2 + 2 x + 3 x 2 + 3 x 2 + 2 x + 3 + x 2 + 3 ) x L = lim x ( 1 + 1 x 2 + 2 x + 3 + x 2 + 3 2 x x 2 + 2 x + 3 x 2 + 3 ) x x 2 + 2 x + 3 + x 2 + 3 2 x x 2 2 x + 3 x 2 + 3 . 2 x x 2 + 2 x + 3 x 2 + 3 x 2 + 2 x + 3 + x 2 + 3 L = exp ( lim n x ( 2 x x 2 + 2 x + 3 x 2 + 3 ) x 2 + 2 x + 3 + x 2 + 3 ) L = exp ( 1 2 ) = 1 e \begin{aligned} & L = \displaystyle\lim_{x\to \infty}\left(\sqrt{x^2 +2x+3} -\sqrt{x^2 +3} \right)^x\\& L = \displaystyle\lim_{x\to \infty}\left(\dfrac{2x}{\sqrt{x^2+2x+3} + \sqrt{x^2+3}}\right)^x\\& L = \displaystyle\lim_{x\to \infty}\left(\dfrac{\sqrt{x^2+2x+3}+\sqrt{x^3+3}+ 2x -(\sqrt{x^2+2x+3}+\sqrt{x^2+3})}{\sqrt{x^2+2x+3}+ \sqrt{x^2+3}}\right)^x \\& L = \displaystyle \lim_{x\to\infty} \left(1 + \dfrac{2x-(\sqrt{x^2+2x+3} +\sqrt{x^2+3})}{\sqrt{x^2+2x+3}+\sqrt{x^2+3}}\right)^x \\& L = \displaystyle\lim_{x\to\infty} \left(1 + \dfrac{2x -\sqrt{x^2+2x+3} -\sqrt{x^2+3}}{\sqrt{x^2+2x+3}+\sqrt{x^2+3}}\right)^x\\& L = \displaystyle\lim_{x\to\infty}\left(1+\dfrac{1}{\dfrac{\sqrt{x^2+2x+3}+\sqrt{x^2+3}}{2x-\sqrt{x^2+2x+3}-\sqrt{x^2+3}}}\right)^{\small\dfrac{x\sqrt{x^2+2x+3}+\sqrt{x^2+3}}{2x-\sqrt{x^2-2x+3}-\sqrt{x^2+3}}.\dfrac{2x-\sqrt{x^2+2x+3}-\sqrt{x^2+3}}{\sqrt{x^2+2x+3}+\sqrt{x^2+3}}}\\& L = \text{exp}\left(\displaystyle\lim_{n\to\infty}\dfrac{x(2x -\sqrt{x^2+2x+3}-\sqrt{x^2+3})}{\sqrt{x^2+2x+3}+\sqrt{x^2+3}}\right)\\& L = \text{exp}\left(-\dfrac{1}{2}\right) = \dfrac{1}{\sqrt e} \end{aligned}

I have got it.

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

Wow !! Upvoted :) Sir . I hope that you liked my solution as well. :D

Naren Bhandari - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...