Hot Integral - 10

Calculus Level 5

Consider the integral given by

f ( t ) = 0 d x x 4 + 4 x 3 + ( 5 t ) x 2 + 2 ( 1 t ) x \qquad \qquad \displaystyle f(t) = \int\limits_0^{\infty}\frac{dx}{\sqrt{x^4+4x^3+(5-t)x^2+2(1-t)x}}

Then ,

0 z n 1 log z f ( z ) d z = Γ ( A B n ) C Γ ( n ) D ( E ψ ( F G n ) + H ψ ( K n ) + ψ ( n ) ) L Γ ( P n ) Q \displaystyle \int\limits_0^{\infty} z^{n-1}\log z f(-z) dz = \frac{\Gamma(\frac{A}{B}-n)^C\Gamma(n)^D\left(-E\psi(\frac{F}{G}-n) + H\psi(K-n) + \psi(n)\right)}{L\Gamma(P-n)^Q}

Calculate

A + B + C + D + E + F + G + H + K + L + P + Q A+B+C+D+E+F+G+H+K+L+P+Q

Details and Assumptions

  • A , B , C , D , E , F , G , H , K , L , P , Q A,B,C,D,E,F,G,H,K,L,P,Q are all positive integers.

  • Γ \Gamma represents the Gamma function.

  • ψ \psi represents the Polygamma function.

  • n ( 1 / 64 , 1 / 4 ) n \in (1/64,1/4)

  • gcd ( A , B ) = gcd ( F , G ) = 1 \gcd(A,B)=\gcd(F,G)=1

This is a part of Hot Integrals


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 8, 2016

Since x 4 + 4 x 3 + ( 5 t ) x 2 + 2 ( 1 t ) x = [ ( x + 1 ) 2 1 ] [ ( x + 1 ) 2 t ] x^4 + 4x^3 + (5-t)x^2 + 2(1-t)x \,=\, \big[(x+1)^2-1\big]\big[(x+1)^2 - t\big] , it follows that f ( t ) = 0 d x ( ( x + 1 ) 2 1 ) ( ( x + 1 ) 2 + t ) = 1 d x ( x 2 1 ) ( x 2 + t ) = 0 1 2 π sec θ tan θ d θ tan θ sec 2 θ + t = 0 1 2 π d θ 1 + t cos 2 θ \begin{array}{rcl} f(-t) & = & \displaystyle\int_0^\infty \frac{dx}{\sqrt{((x+1)^2 - 1)((x+1)^2+t)}} \; = \; \int_1^\infty \frac{dx}{\sqrt{(x^2-1)(x^2+t)}} \\ & = & \displaystyle \int_0^{\frac12\pi} \frac{\sec\theta \tan\theta\,d\theta}{\tan\theta \sqrt{\sec^2\theta + t}} \; = \; \int_0^{\frac12\pi} \frac{d\theta}{\sqrt{1 + t\cos^2\theta}} \end{array} using the substitution x = sec θ x = \sec\theta . Hence I ( α ) = 0 t α 1 f ( t ) d t = 0 ( 0 1 2 π d θ 1 = t cos 2 θ ) d t = 0 1 2 π ( 0 t α 1 1 + t cos 2 θ d t ) d θ = 0 1 2 π cos 2 α θ B ( α , 1 2 α ) d θ = 1 2 B ( α , 1 2 α ) B ( 1 2 , 1 2 α ) = 1 2 Γ ( α ) Γ ( 1 2 α ) Γ ( 1 2 ) Γ ( 1 2 ) Γ ( 1 2 α ) Γ ( 1 α ) = Γ ( α ) Γ ( 1 2 α ) 2 2 Γ ( 1 α ) \begin{array}{rcl} I(\alpha) & = & \displaystyle\int_0^\infty t^{\alpha-1}f(-t)\,dt \; = \; \int_0^\infty \left(\int_0^{\frac12\pi} \frac{d\theta}{\sqrt{1 = t\cos^2\theta}}\right)\,dt \\ & = & \displaystyle\int_0^{\frac12\pi} \left(\int_0^\infty \frac{t^{\alpha-1}}{\sqrt{1 + t\cos^2\theta}}\,dt\right)\,d\theta \\ & = & \displaystyle\int_0^{\frac12\pi} \cos^{-2\alpha}\theta B(\alpha,\tfrac12-\alpha)\,d\theta \; = \; \tfrac12 B(\alpha,\tfrac12-\alpha) B(\tfrac12,\tfrac12-\alpha) \\ & = & \displaystyle\tfrac12 \frac{\Gamma(\alpha)\Gamma(\frac12-\alpha)}{\Gamma(\frac12)} \frac{\Gamma(\frac12)\Gamma(\frac12-\alpha)}{\Gamma(1-\alpha)} \; = \; \frac{\Gamma(\alpha)\Gamma(\frac12-\alpha)^2}{2\Gamma(1-\alpha)} \end{array} Differentiating gives 0 t α 1 ln t f ( t ) d t = I ( α ) = Γ ( α ) Γ ( 1 2 α ) 2 2 Γ ( 1 α ) [ 2 ψ ( 1 2 α ) + ψ ( 1 α ) + ψ ( α ) ] \int_0^\infty t^{\alpha-1}\ln t\,f(-t)\,dt \; = \; I'(\alpha) \; = \; \frac{\Gamma(\alpha)\Gamma(\frac12-\alpha)^2}{2\Gamma(1-\alpha)}\big[-2\psi(\tfrac12-\alpha) + \psi(1-\alpha) + \psi(\alpha)\big] This certainly all works for 1 64 < α < 1 4 \tfrac{1}{64} < \alpha < \tfrac14 , as implied by the question, but I think that it holds for a greater range of α \alpha ; between 0 0 and 1 2 \tfrac12 .

Whatever: the answer is 1 + 2 + 2 + 1 + 2 + 1 + 2 + 1 + 1 + 2 + 1 + 1 = 17 1+2+2+1+2+1+2+1+1+2+1+1 = 17 .

Wow!!!! Another terrific solution! (Printing)

Pi Han Goh - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...