Consider the integral given by
f ( t ) = 0 ∫ ∞ x 4 + 4 x 3 + ( 5 − t ) x 2 + 2 ( 1 − t ) x d x
Then ,
0 ∫ ∞ z n − 1 lo g z f ( − z ) d z = L Γ ( P − n ) Q Γ ( B A − n ) C Γ ( n ) D ( − E ψ ( G F − n ) + H ψ ( K − n ) + ψ ( n ) )
Calculate
A + B + C + D + E + F + G + H + K + L + P + Q
Details and Assumptions
A , B , C , D , E , F , G , H , K , L , P , Q are all positive integers.
Γ represents the Gamma function.
ψ represents the Polygamma function.
n ∈ ( 1 / 6 4 , 1 / 4 )
g cd ( A , B ) = g cd ( F , G ) = 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Since x 4 + 4 x 3 + ( 5 − t ) x 2 + 2 ( 1 − t ) x = [ ( x + 1 ) 2 − 1 ] [ ( x + 1 ) 2 − t ] , it follows that f ( − t ) = = ∫ 0 ∞ ( ( x + 1 ) 2 − 1 ) ( ( x + 1 ) 2 + t ) d x = ∫ 1 ∞ ( x 2 − 1 ) ( x 2 + t ) d x ∫ 0 2 1 π tan θ sec 2 θ + t sec θ tan θ d θ = ∫ 0 2 1 π 1 + t cos 2 θ d θ using the substitution x = sec θ . Hence I ( α ) = = = = ∫ 0 ∞ t α − 1 f ( − t ) d t = ∫ 0 ∞ ( ∫ 0 2 1 π 1 = t cos 2 θ d θ ) d t ∫ 0 2 1 π ( ∫ 0 ∞ 1 + t cos 2 θ t α − 1 d t ) d θ ∫ 0 2 1 π cos − 2 α θ B ( α , 2 1 − α ) d θ = 2 1 B ( α , 2 1 − α ) B ( 2 1 , 2 1 − α ) 2 1 Γ ( 2 1 ) Γ ( α ) Γ ( 2 1 − α ) Γ ( 1 − α ) Γ ( 2 1 ) Γ ( 2 1 − α ) = 2 Γ ( 1 − α ) Γ ( α ) Γ ( 2 1 − α ) 2 Differentiating gives ∫ 0 ∞ t α − 1 ln t f ( − t ) d t = I ′ ( α ) = 2 Γ ( 1 − α ) Γ ( α ) Γ ( 2 1 − α ) 2 [ − 2 ψ ( 2 1 − α ) + ψ ( 1 − α ) + ψ ( α ) ] This certainly all works for 6 4 1 < α < 4 1 , as implied by the question, but I think that it holds for a greater range of α ; between 0 and 2 1 .
Whatever: the answer is 1 + 2 + 2 + 1 + 2 + 1 + 2 + 1 + 1 + 2 + 1 + 1 = 1 7 .