Let I n ( x ) = π e 3 π i n / 2 2 n − ∞ ∫ ∞ e − ( t − i x ) 2 t n d t
Then, n = 0 ∑ ∞ Γ ( 2 ( n + 1 ) ) ( 2 2 a + 1 ) n I 2 n + 1 ( x ) y 2 n = A ( y B + C ) − D a − Q E x ( X F Y ( a + H G ; K J ; y N + P y L x M ) )
Calculate A + B + C + D + E + G + H + J + K + L + M + N + P + Q + X + Y
Details and Assumptions:
- X F Y ( . . . ; . ; . . ) represents hypergeometric functions.
- ( b ) n represents Pochhammer symbol.
- g cd ( E , Q ) = g cd ( G , H ) = g cd ( J , K ) = 1
- A , B , C , D , E , G , H , J , K , L , M , N , P , Q , X , Y are all positive integers.
- i = − 1
■ This is a part of Hot Integrals
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
This is a combination of two fairly standard results. To begin with, this integral tells us that I n ( x ) = H n ( x ) is the n th Hermite polynomial. But then n = 0 ∑ ∞ Γ ( 2 n + 2 ) ( 2 2 a + 1 ) n I 2 n + 1 ( x ) y 2 n = = n = 0 ∑ ∞ ( 2 n + 1 ) ! ( a + 2 1 ) n H 2 n + 1 ( x ) y 2 n 2 ( y 2 + 1 ) − a − 2 1 x 1 F 1 ( a + 2 1 ; 2 3 ; y 2 + 1 x 2 y 2 ) using a less common generating function identity for the Hermite polynomials. Thus the answer is 2 + 2 + 1 + 1 + 1 + 1 + 2 + 3 + 2 + 2 + 2 + 2 + 1 + 2 + 1 + 1 = 2 6 .