Hot Integral - 11

Calculus Level 5

Let I n ( x ) = e 3 π i n / 2 2 n π e ( t i x ) 2 t n d t \qquad \qquad \displaystyle I_n(x)=\frac{e^{3\pi in/2}2^n}{\sqrt{\pi}}\int\limits_{-\infty}^{\infty}e^{-(t-ix)^2}t^n dt

Then, n = 0 ( 2 a + 1 2 ) n I 2 n + 1 ( x ) y 2 n Γ ( 2 ( n + 1 ) ) = A ( y B + C ) D a E Q x ( X F Y ( a + G H ; J K ; y L x M y N + P ) ) \displaystyle \sum_{n=0}^{\infty} \frac{( \frac{2a+1}{2} )_n I_{2n+1}(x) y^{2n}}{\Gamma(2(n+1))} = A(y^B+C)^{- Da - \frac{E}{Q}} x (\;_XF_Y(a+\frac{G}{H} ; \frac{J}{K} ; \frac{y^Lx^M}{y^N+P}))

Calculate A + B + C + D + E + G + H + J + K + L + M + N + P + Q + X + Y A+B+C+D+E+G+H+J+K+L+M+N+P+Q+X+Y

Details and Assumptions:

- X F Y ( . . . ; . ; . . ) \;_XF_Y(...;.;..) represents hypergeometric functions.

- ( b ) n (b)_n represents Pochhammer symbol.

- gcd ( E , Q ) = gcd ( G , H ) = gcd ( J , K ) = 1 \gcd(E,Q)=\gcd(G,H)=\gcd(J,K)=1

- A , B , C , D , E , G , H , J , K , L , M , N , P , Q , X , Y A,B,C,D,E,G,H,J,K,L,M,N,P,Q,X,Y are all positive integers.

- i = 1 i=\sqrt{-1}

\blacksquare This is a part of Hot Integrals


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 9, 2016

This is a combination of two fairly standard results. To begin with, this integral tells us that I n ( x ) = H n ( x ) I_n(x) = H_n(x) is the n n th Hermite polynomial. But then n = 0 ( 2 a + 1 2 ) n I 2 n + 1 ( x ) y 2 n Γ ( 2 n + 2 ) = n = 0 ( a + 1 2 ) n H 2 n + 1 ( x ) y 2 n ( 2 n + 1 ) ! = 2 ( y 2 + 1 ) a 1 2 x 1 F 1 ( a + 1 2 ; 3 2 ; x 2 y 2 y 2 + 1 ) \begin{array}{rcl} \displaystyle \sum_{n=0}^\infty \frac{\big(\frac{2a+1}{2}\big)_n I_{2n+1}(x) y^{2n}}{\Gamma(2n+2)} & = & \displaystyle \sum_{n=0}^\infty \frac{\big(a +\frac12\big)_n H_{2n+1}(x) y^{2n}}{(2n+1)!} \\ & = & \displaystyle 2(y^2+1)^{-a-\frac12} x \, {}_1F_1\big(a+\tfrac12\,;\,\tfrac32\,;\, \tfrac{x^2y^2}{y^2+1}\big) \end{array} using a less common generating function identity for the Hermite polynomials. Thus the answer is 2 + 2 + 1 + 1 + 1 + 1 + 2 + 3 + 2 + 2 + 2 + 2 + 1 + 2 + 1 + 1 = 26 . 2 + 2 + 1 + 1 + 1 + 1 + 2 + 3 + 2 + 2 + 2 + 2 + 1 + 2 + 1 + 1 \; = \; \boxed{26} \;.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...