Hot Integral - 15

Calculus Level 5

0 t μ 1 log 2 t f 2 ( t ) d t = π Γ a ( μ b ) c 2 Γ ( μ + d e ) { g ψ ( h ) ( μ b ) i j ψ ( k ) ( μ + l m ) ψ ( n ) ( μ b ) + ψ ( o ) ( μ + l m ) p + q ψ ( r ) ( μ s ) ψ ( u ) ( μ + v w ) } \displaystyle \int\limits_{0}^{\infty} t^{\mu-1}\log^2 t f^2(t) dt = \frac{\sqrt{\pi}\Gamma^a(\frac{\mu}{b})}{c^2\Gamma(\frac{\mu+d}{e})}\left\{g\psi^{(h)}(\frac{\mu}{b})^i - j\psi^{(k)}(\frac{\mu +l}{m})\psi^{(n)}(\frac{\mu}{b}) + \psi^{(o)}(\frac{\mu +l}{m})^p + q\psi^{(r)}(\frac{\mu}{s}) - \psi^{(u)}(\frac{\mu + v}{w}) \right\}

where

f ( x ) = 0 cos ( x sinh t ) d t \displaystyle f(x)=\int\limits_{0}^{\infty} \cos(x\sinh t) dt

Calculate a + b + c + d + e + g + h + i + j + k + l + m + n + o + p + q + r + s + u + v + w a+b+c+d+e+g+h+i+j+k+l+m+n+o+p+q+r+s+u+v+w

Clarifications:

  • a , b , c , d , e , g , h , i , j , k , l , m , n , o , p , q , r , s , u , v , w a,b,c,d,e,g,h,i,j,k,l,m,n,o,p,q,r,s,u,v,w are all integers.

  • ψ ( λ ) ( ) \psi^{(\lambda)}(\cdot) represents their usual meanings.(Polygamma)

  • Γ ( ) \Gamma(\cdot) is Gamma function.

  • μ \mu is a real constant.


This is a part of Hot Integrals


The answer is 44.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...